АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Динамика манипуляторов промышленных роботов. Силовой расчет манипулятора

Читайте также:
  1. I. Расчет накопительной части трудовой пенсии.
  2. I. Расчет производительности технологической линии
  3. I. Расчет размера страховой части трудовой пенсии.
  4. II. Определяем годовые и расчетные часовые расходы газа на бытовое и коммунально - бытовое потребление для населенного пункта
  5. II. Расчетная часть задания
  6. III. Расчет процесса в проточной части ЦВД после камеры смешения.
  7. IV. Расчет продуктов сгорания топлива.
  8. IV. ТИПОВОЙ ПРИМЕР РАСЧЕТОВ.
  9. MFG/PRO – лучшее решение для крупных и средних промышленных предприятий с дискретным типом производства
  10. RPPAYSP (РП. Спецификация расчетов)
  11. V. Расчет теплотехнических параметров смеси, образовавшейся в результате горения.
  12. V.2.1. Расчетные длины участков ступенчатой колонны

Из большого разнообразия задач динамики манипуляторов рассмотрим две: силовой расчет и расчет быстродействия ПР. При силовом расчете манипуляторов решаются задачи по определению внешних силовых управляющих воздействий, обеспечивающих требуемый закон движения механизма, и по расчету реакций в кинематических парах. Первую часть часто называют задачей синтеза управления. При силовом расчете обычно применяется метод кинетостатики, основанный на принципе Д'Аламбера. По этому методу к внешним силам и моментам, приложенным к звеньям механизма, добавляются расчетные силы инерции, которые обеспечивают силовую уравновешенность системы и позволяют рассматривать подвижную систему в квазистатическом равновесии, то есть как условно неподвижную. Силовой расчет выполняется при заданной полезной нагрузке , известных законах движения звеньев и (из предварительного кинематического расчета), известных инерционных характеристиках звеньев – массах звеньев mi и их моментах инерции Isi. По этим данным определяются главные векторы и главные моменты сил инерции для каждого из звеньев механизма. Для открытой кинематической цепи решение начинаем с выходного звена – схвата. Отброшенные связи звена n со звеном n- 1 и выходным валом привода звена n заменяем реакциями и и составляем кинетостатические векторные уравнения равновесия сил и моментов для звена n (рис. 2.4):


где – вектор момента в кинематической паре (проекция этого вектора на ось z является движущим моментом привода в КП, то есть ).

Рис. 2.4. Схема силового расчета манипулятора

 

Проецируя векторные уравнения на оси координат, получим систему шести алгебраических уравнений, откуда определим шесть неизвестных:

Далее рассматривается равновесие звена n- 1. При этом в месте его присоединения к звену n прикладываются реакции со стороны звена n

,

равные по величине и противоположные по направлению реакциям, определен­ным на предыдущем этапе расчета. Так последовательно составляются уравне­ния силового равновесия для всех n звеньев механизма. Из решения полу­ченной системы 6 n уравнений определяются реакции в кинематических парах, движущие силы и моменты.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)