АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Кинематический анализ механизма манипулятора

Читайте также:
  1. FAST (Методика быстрого анализа решения)
  2. FMEA - анализ причин и последствий отказов
  3. I 5.3. АНАЛИЗ ОБОРАЧИВАЕМОСТИ АКТИВОВ 1 И КАПИТАЛА ПРЕДПРИЯТИЯ
  4. I. Два подхода в психологии — две схемы анализа
  5. I. Психологический анализ урока
  6. I. Финансовая отчетность и финансовый анализ
  7. I.5.5. Просмотр и анализ результатов решения задачи
  8. II. Анализ положения дел на предприятии
  9. II. Основные проблемы, вызовы и риски. SWOT-анализ Республики Карелия
  10. II. ОСНОВНЫЕ ЭТАПЫ ФАРМАЦЕВТИЧЕСКОГО АНАЛИЗА
  11. II. Психологический анализ урока
  12. II.1.2. Сравнительный анализ гуманистической и рационалистической моделей педагогического процесса

Первая и основная задача кинематики – определение функции положения. Для пространственных механизмов наиболее эффективными методами решения этой задачи являются векторный метод и метод преобразования координат. При решении прямой задачи о положении схвата манипулятора обычно используют метод преобразования координат. Из множества методов преобразования координат, которые отличаются друг от друга правилами выбора осей локальных систем координат, для манипуляторов обычно используется метод Денавита и Хартенберга.

При решении задачи о положениях необходимо: в прямой задаче определить положение выходного звена как функцию перемещений в приводах, в обратной – заданное положение выходного звена представить как функцию перемещений в приводах. Выбор расположения и ориентации локальных систем координат должен обеспечивать выполнение этих задач. При использовании метода Денавита и Хартенберга оси координат располагаются по следующим правилам:

1. Для звена i ось z i направляется по оси кинематической пары, образуемой им со звеном (i +1). Начало координат размещают в геометрическом центре этой пары.

2. Ось xi направляется по общему перпендикуляру к осям z i-1 и z i с направлением от z i-1 к z i. Если оси z i-1 и z i совпадают, то x i перпендикулярна к ним и направлена произвольно. Если они пересекаются в центре кинематической пары, то начало координат располагается в точке пересечения, а ось x i направляется по правилу векторного произведения (кратчайший поворот оси z i до совмещения с z i-1 при наблюдении с конца x i должен происходить против часовой стрелки).

3. Ось y i направляется так, чтобы система координат была правой.

В прямой задаче необходимо определить положения схвата манипулятора и связанной с ним системы координат Mxnynzn по отношению к неподвижной, или базовой, системе координат Kx 0 y 0 z 0. Это осуществляется последова­тельными переходами из системы координат звена i в систему координат звена i -1. Согласно принятому методу каждый переход включает в себя последовательность четырех движений – двух поворотов и двух параллельных переносов, осуществляемых в указанной последовательности (см. рис. 2.1):

  • поворот i -й системы вокруг оси xi на угол -qi до параллельности осей zi и zi-1 (положительное направление поворота при наблюдении с конца вектора xi против часовой стрелки);
  • перенос вдоль оси xi на величину -ai до совмещения начала системы координат Oi с точкой пересечения осей xi и z i-1 (отсчет по оси xi от точки пересечения оси xi и оси z i-1);
  • перенос вдоль оси z i-1 на величину -si, после которого начало системы координат Oi оказывается в начале координат Oi -1 системы (i -1) (отсчитывается по оси zi -1 от ее начала координат Oi -1 до точки ее пересечения с осью xi);
  • поворот вокруг оси zi- 1 на угол -ji до тех пор, пока ось xi не станет параллельной оси xi- 1 (положительное направление поворота при наблюдении с конца вектора zi -1 против часовой стрелки).

Необходимо отметить, что знак угла поворота не имеет значения, так как в матрицах перехода используются направляющие косинусы (четные функции). Целесообразно рассматривать угол, обеспечивающий кратчайший поворот оси старой системы i до совмещения (параллельности) с соответствующей осью новой (i -1). Перемещения начала координат определяются как координаты начала старой системы Oi в новой Oi- 1.

В манипуляторах обычно используются одноподвижные кинематические пары – или вращательные, или поступательные. Оба относительных движения, как вращательное, так и поступательное, реализуются в цилиндрических парах. Поэтому при общем представлении механизма используются (рис. 2.1) цилиндрические пары.

Рис. 2.1. Переход из системы координат звена i в систему координат звена i -1

 

Матрицы перехода их системы Oi в систему Oi-1 можно записать так:

,

где – матрица поворота вокруг оси xi на угол -qi, – матрица переноса вдоль оси xi на -ai, – матрица переноса вдоль оси zi- 1 на -si, – матрица поворота вокруг оси zi- 1 на угол -ji.

В этих матрицах переменные si и j i соответствуют относительным перемещениям звеньев в кинематических парах и являются обобщенными координатами манипулятора, определяющими конфигурацию механизма в рассматриваемом положении. Переменные ai и qi определяются конструктив­ным исполнением звеньев манипулятора, в процессе движения они остаются неизменными.

Положение некоторой произвольной точки М в системе координат звена i определяется вектором rMi, а в системе координат звена (i -1) – вектором rMi- 1. Эти радиусы связаны между собой через матрицу преобразования координат Мi следующим уравнением:

,

где – матрица перехода из i -й системы координат в (i – 1)-ю.

.

Рассмотрим шестиподвижный манипулятор в исходном, или начальном, положении (рис. 2.2). За начальное положение принимается такое, в котором все относительные обобщенные координаты равны нулю. Переход из системы координат любого i -го звена к неподвижной или базовой системе записывается в виде

или ,

где – матрица преобразования координат i- й системы в координаты базовой системы координат.

Рис. 2.2. Шестиподвижный манипулятор в исходном, или начальном, положении

 

Для схемы, изображенной на рис. 2.2, радиус rM6 = 0, а радиус rM0 определяется по формуле

,

то есть положение выходного звена манипулятора определяется матрицей Тn. Элементы этой матрицы определяют положение центра схвата точки М и ориентацию его в пространстве. Четвертый столбец определяет декартовы координаты точки М (проекции вектора rM 0на оси координат). Третий столбец содержит направляющие косинусы оси zn системы координат, связанной со схватом, или вектора подхода , который характеризует направление губок схвата (рис. 2.3). Второй столбец определяет направление оси yn или вектора ориентации , который проходит через центр схвата по оси, перпендикулярной к рабочим поверхностям его губок. В первом столбце содержатся направляющие косинусы оси xn или вектора . Углом подхода схвата α называется угол между вектором подхода и базовым вектором:

,

где – орт вектора неподвижной, или базовой, системы координат. С учетом сказанного матрица Tn может быть представлена в следующем виде:

.

Рис. 2.3. Ориентация схвата манипулятора

 

В результате матричных преобразований получаем радиус-вектор точки М схвата в функции обобщенных координат. Обычно за обобщенные координаты принимают линейные и угловые перемещения в кинематических парах или на выходных валах приводов манипулятора. В механизме с n подвижностями в общем виде функцию положения схвата можно записать так:

где q 1, q 2, ... qn – обобщенные координаты манипулятора.

При кинематическом анализе манипулятора в прямой задаче необходимо определить линейные и угловые скорости и ускорения схвата при заданных угловых и линейных обобщенных скоростях и ускорениях (обычно относительных скоростях и ускорениях в кинематических парах механизма). В обратной задаче по заданному закону изменения скоростей и ускорений схвата определяются законы изменения скоростей и ускорений в КП или на выходных звеньях приводов. Решение прямой задачи кинематики для точки М схвата можно получить, продифференцировав четвертый столбец матрицы Тn по времени:

.

Угловую скорость и угловое ускорение схвата можно определить векторным суммированием относительных угловых скоростей во вращательных КП механизма. Так как векторы угловых скоростей при данном выборе ориентации осей координат совпадают с осью z, то угловая скорость схвата

где – орт оси z системы координат, расположенной в центре КП, соединяющей звено i и звено i- 1, m – число вращательных КП в механизме.

Дифференцируя это выражение по времени, получим формулу для определения углового ускорения схвата:

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)