АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение. Данное ДУ содержит в правой части две функции специального вида

Читайте также:
  1. Волновое уравнение для упругих волн и его общее решение.
  2. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  3. Выбрать разрешающий элемент (правило предыдущей теоремы), сделать шаг жордановых исключений. Получить новое опорное решение. Вернуться на шаг 2.
  4. Дифференциальное уравнение вынужденных колебаний и его решение. Резонанс. Резонансные кривые.
  5. Дифференциальное уравнение затухающих колебаний и его решение. Основные характеристики затухающих колебаний. Логарифмический декремент затухания. Апериодический процесс.
  6. Имеет ли система однородных уравнений нетривиальное решение. Если имеет, найти его.
  7. Конструктивное решение.
  8. Метод Гаусса заключается в приведении системы линейных уравнений к ступенчатому виду и затем её решение.
  9. Рациональное управленческое решение. Способы принятия рационального решения. Списки. Дерево решений. Причинно-следственные диаграммы.
  10. Решение.
  11. Решение.
  12. Решение.

Данное ДУ содержит в правой части две функции специального вида. Будем искать его решение в виде: , где – общее решение однородного уравнения, а и – некоторые частные решения неоднородного уравнения, соответствующие каждой из функций.

Характеристическое уравнение имеет корни .

Тогда общее решение соответствующего однородного уравнения имеет вид:

.

Будем интегрировать уравнение (11) отдельно для каждого слагаемого, стоящего в правой части уравнения.

1) ;

Частное решение ищем в виде: .

Методом неопределенных коэффициентов находим:

.

2) ;

Частное решение ищем в виде: .

Методом неопределенных коэффициентов находим:

.

Окончательно имеем: – общее решение неоднородного уравнения.

Ответ: .

12. Найти общее решение ДУ: .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)