АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Матрица тонкой линзы

Читайте также:
  1. Nikon D7100 - матрица APS-C в идеальном оформлении
  2. SWOT- матрица
  3. V2: ДЕ 4 – Линейные отображения. Линейные операции над матрицами
  4. Анализ матричных данных (матрица приоритетов)
  5. Б1 2. Линейный оператор в конечномероном пространстве, его матрица. Характеристический многочлен линейного оператора. Собственные числа и собств векторы.
  6. Билет 11. Различные уравнения прямой в пространстве. Матрица перехода к новому базису.
  7. Билет 13. Линейные операторы. Матрица линейного оператора.
  8. Билет 23. Матрица SWOT – анализа.
  9. Билет 27 Ортогональный оператор и его матрица в ортонормированном базисе
  10. Билет 27. Жорданов базис и жорданова матрица линейного оператора в комплексном пространстве.
  11. Билет 32. Сопряженный оператор. Существование и единственность. Матрица сопряженного оператора.
  12. Билет26 Самосопряженный оператор и его матрица в ортонормированном базисе.

Линзы и диоптрические (преломляющие) элементы можно рассматривать как многокомпонентные системы, состоящие из поверхностей, разделенных промежутками. Например, линзу в воздухе можно представить в матричном виде:

После преобразований матрица линзы (опорные плоскости в вершинах) примет вид: В этой матрице хорошо видны зависимости элементов от основных кардинальных характеристик системы.

Задача

Перед стеклянным стержнем с выпуклой поверхностью радиусом 20 мм на расстоянии 100 мм расположен предмет. Величина предмета y=10 мм. Определить величину и положение изображения внутри стеклянного стержня, если показатель преломления среды стержня n=1.5.

Решение:

Сначала необходимо определить этапы построения изображения этой системой.

Этапа получается три: перенос от предмета до преломляющей поверхности - T 0, преломление - R, перенос до изображения - T 1.

Определим матрицы:

;

Произведение матриц даст нам матрицу G преобразования лучей этой системой.

Положение изображения:

Для сопряжения ОП и ОП' условие B =0.

100-x=0. Значит, х=100 - изображение находится на расстоянии 100 мм от края стержня.

Размер изображения:

Величина A - линейное увеличение, а величина D - обратная ей.

Значит, β=1/-1.5=-0.66. Величина изображения y'= β·y=-0.66·10=-6.6 мм. Изображение будет перевернутым.

Ответ: Перевернутое изображение величиной 6.6 мм будет находиться внутри стержня на расстоянии 100 мм от края.

Пример определения параксиальных характеристик системы по матрице Гаусса изложен в "Приложении П2. Вычисление и отображение параксиальных характеристик при помощи матричной оптики".

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)