АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнения в полных дифференциалах. Уравнением в полных дифференциалах называется уравнение

Читайте также:
  1. I I. Тригонометрические уравнения.
  2. V2: ДЕ 54 - Дифференциальные уравнения, допускающие понижение порядка
  3. V2: ДЕ 57 - Фундаментальная система решений линейного однородного дифференциального уравнения
  4. V2: Применения уравнения Шредингера
  5. V2: Уравнения Максвелла
  6. VI Дифференциальные уравнения
  7. Алгебраические уравнения
  8. Алгебраические уравнения
  9. Алгоритм составления уравнения химической реакции
  10. АНАЛИЗ УРАВНЕНИЯ (13)
  11. Аналитическое решение данного дифференциального уравнения
  12. Аналитическое решение данного дифференциального уравнения

Уравнением в полных дифференциалах называется уравнение

левая часть, которого является полным дифференциалом некоторой функции, т.е.

Общий интеграл уравнения определяется формулой

.

Далее, поскольку

то из условия следуют уравнения

которыми определяется функция . Необходимое и достаточное условие того, что уравнение является уравнением в полных дифференциалах, выражается равенством

которое вытекает из условия равенства смешанных производных:

.

Если левая часть исходного уравнения не является полным дифференциалом, но становится таковым при умножении на некоторую функцию - , то называется интегрирующим множителем.

Интегрирующий множитель зависит только от , т.е. , если

и зависит только от , если

Пример. Проинтегрировать уравнение .

Имеем , .

Мы видим, что и, следовательно, это уравнение – дифференциальное уравнение в полных дифференциалах.

Поэтому .

Аналогично

.

Сравнивая с найденным, запишем:

.

Отсюда вытекает, что

Отсюда

.

Следовательно, интеграл уравнения имеет вид:

.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)