|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Определенный интеграл. Формула Ньютона-ЛейбницаВыше было показано, что вычисление площади плоской фигуры свелось к нахождению предела особого рода сумм (1). Решение многих других задач математики, естествознания и техники приводит к вычислению пределов такого же рода сумм. Это даёт основание для следующего определения. Определение. Пусть на отрезке На каждом из этих отрезков выберем по точке Длину наибольшего отрезка обозначим через Определенным интегралом от функции
Выражение, стоящее под знаком предела, называется интегральной суммой для функции Из задачи о вычислении площади криволинейной трапеции вытекает следующий геометрический смысл определённого интеграла: если где
Если существует интеграл от функции Справедливо следующее утверждение: если По определению будем считать, что
Ключевую роль в вычислении определенных интегралов играет формула Ньютона-Лейбница, называемая основной формулой интегрального исчисления. Теорема. Если
Формула (2) показывает, что вычисление определенных интегралов сводится к вычислению первообразной (т.е. к вычислению неопределенных интегралов). Для вычисления удобна сокращенная запись
С помощью этого обозначения формулу (2) записывают так:
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |