|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Алгоритм ЗС-2Алгоритм ЗС-1 Начальный этап (1) Выбрать погрешность расчёта e=10-3¸10-7. Получить начальный интервал методом Свенна. (2) Вычислить стартовые точки l1=a1+0,382L1, m1=a1+0,618L1 (следует отметить, что золотые числа следует вычислять точно) (3) Принять k=1 – счётчик числа итераций Основной этап Шаг 1.Сократить ТИЛ рассмотрением 2-х ситуаций: (1) Если f(l)<f(m),то ak+1=ak bk+1=mk mk+1=lk lk=ak+1+0,382Lk+1 иначе ak+1=lk bk+1=bk lk+1=mk mk=ak+1+0,618Lk+1 (2) Положить k=k+1, Lk+1=|bk+1-ak+1| Шаг 2. Проверить критерий окончания поиска: если |ak+1-bk+1|£e - остановиться – минимум найден. Точнее фиксируем аппроксимирующий минимум как . Иначе вернуться на шаг 1.
Алгоритм ЗС-2 Начальный этап (4) Выбрать погрешность расчёта e=10-3¸10-7. Получить начальный интервал методом Свенна. (5) Вычислить стартовые точки l1=a1+0,382L1, m1=a1+0,618L1 (следует отметить, что золотые числа следует вычислять точно) (6) Принять k=1 – счётчик числа итераций Основной этап Шаг 1. Взять очередную пробную точку x2=ak+bk-x1, симметричную исходной и сократить ТИЛ рассмотрением 4-х возможных ситуаций: (1) Если (x1<x2) и (f(x1)<f(x2)) то b=x2; (2) Если (x1<x2) и (f(x1)>=f(x2)) то a=x1; (3) Если (x1>x2) и (f(x1)<f(x2)) a=x2; (4) Если (x1>x2) и (f(x1)>=f(x2)) b=x1; Увеличить счётчик числа итераций k=k+1 Шаг 2. Проверить критерий окончания поиска: если |ak+1-bk+1|£e - остановиться – минимум найден. Точнее фиксируем аппроксимирующий минимум как . Иначе вернуться на шаг 1.
Метод Фибоначчи
Метод Фибоначчи является процедурой линейного поиска минимума унимодальной функции f(x) на замкнутом интервале [a, b], отличающейся от процедуры золотого сечения тем, что очередная пробная точка делит интервал локализации в отношении двух последовательных чисел Фибоначчи. Последовательность чисел Фибоначчи задаётся условиями F0 = F1 = 1, Fk+1 = Fk + Fk-1, k = 1,2,... Начальными членами последовательности будут 1, 1, 2, 3, 5, 8, 13,... Стратегия поиска Фибоначчи требует заранее указать n - число вычислений минимизируемой функции и e - константу различимости двух значений f(x). Рассмотрим один из возможных вариантов метода.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |