АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифференциальные уравнения с разделяющимися переменными. Определение.Дифференциальное уравнение вида

Читайте также:
  1. D) постоянных затрат к разнице между ценой реализации продукции и удельными переменными затратами.
  2. I I. Тригонометрические уравнения.
  3. I. Уравнения, сводящиеся к алгебраическим.
  4. II. Однородные уравнения.
  5. V2: ДЕ 54 - Дифференциальные уравнения, допускающие понижение порядка
  6. V2: ДЕ 57 - Фундаментальная система решений линейного однородного дифференциального уравнения
  7. V2: Применения уравнения Шредингера
  8. V2: Уравнения Максвелла
  9. VI Дифференциальные уравнения
  10. А выходные характеристики системы являются зависимыми (эндогенными) переменными и в векторной форме имеют вид
  11. Алгебраические уравнения
  12. Алгебраические уравнения

Определение. Дифференциальное уравнение вида

X (x) d x + Y (y) d y = 0 (13.5)

называется уравнением с разделенными переменными.

Считая y = φ(x) известной, это уравнение можно рассматривать как сумму двух дифференциалов, а неопределенные интегралы от них будут отличаться постоянным числом. То есть общий интеграл уравнения (13.5) имеет вид:

Определение. Уравнение вида

X 1(x) Y 1(y) d x + X 2(x) Y 2(y) d y = 0 (13.6)

называется уравнением с разделяющимися переменными.

Уравнение с разделяющимися переменными может быть приведено к уравнению (13.5) путем деления обеих частей уравнения на произведение Y 1(yX 2(x):

Замечание. Уравнение у ¢ = f 1(x) f 2(y) приводится к уравнению (13.5) следующим образом

,

Решение f 2(y) = 0 может быть особым.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)