АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Риск и доход инвестиционного портфеля3

Читайте также:
  1. I овокупный облагаемый доход Антона 348 600
  2. IV. Показатели доходности (рентабельности).
  3. V. Всего доходов (III - IV).
  4. VIII. Деньги. Доходы. Расходы
  5. Аккордные и подоходные
  6. Анализ бюджета доходов и расходов
  7. Анализ возможности одновременного наступления на объекте инвестиционного проекта сопутствующих видов технического риска
  8. Анализ доходности собственного капитала
  9. Анализ доходов и расходов по обычным видам деятельности, тыс. руб.
  10. Анализ операционных, процентных и внереализационных доходов и расходов
  11. Анализ структуры доходов предприятия
  12. Анализ факторов, влияющих на распределение доходов населения

Проведенный выше для одиночного актива анализ достаточно легко обобщить на случай инвестиционного портфеля. Ожидаемый доход Řp инвестиционного портфеля, состоящего из n активов, каждый соответственно c ожидаемым доходом Ři и удельным весом в портфеле wi, можно выразить формулой:

(3.7)

При этом необходимо иметь в виду, что удельные веса рассчитываются не от номинальной, а от рыночной стоимости соответствующих инвестиций, и сумма всех весов равна единице.

Определим несколько новых понятий. Под флуктуацией инвестиционного актива, в частности ценной бумаги, будем понимать изменение во времени полного дохода (доходности) на этот актив. Степень совпадения флуктуации двух активов в одном или противоположных направлениях, называется корреляцией. Статистической мерой корреляции является коэффициент корреляции, который будем обозначать ρ либо ρij, где номера i и j относятся к соответствующим активам. Коэффициент корреляции теоретически может лежать в пределах от –1 до + 1. В первом случае мы имеем строго негативную корреляцию, во втором – строго позитивную. Нулевой коэффициент корреляции означает, что доходы на рассматриваемые активы не коррелируют между собой. Соответствующие иллюстрации представлены на рис. 3.1, 3.2, 3.3.

На практике достижение как строго позитивной, так и строго негативной корреляции между инвестиционными активами вряд ли возможно. Примером позитивной корреляции могут служить доходы на акции компаний, работающих в одной отрасли и в одном регионе либо одной стране (последнее необходимо для того, что избежать влияния ряда рисков, включая политические). С известной долей осторожности можно утверждать, что негативно коррелируют между собой доходности обыкновенных акций и облигаций[29].

 

Рис. 3.1. Строго позитивная корреляция (ρ=1)

Рис. 3.2. Строго негативная корреляция (ρ=-1)

 

Рис. 3.3. Нулевая корреляция (ρ=0)

 

Введенный выше коэффициент корреляции тесно связан с другой величиной, используемой для описания того, насколько две величины "ковариируют" друг с другом – ковариацией σij. Обозначая через σi и σj соответственно стандартные отклонения доходности активов с номерами i и j, выражение для ковариации можно представить в виде:

 

(3.8)

 

Отметим, что равенства (3.8) позволяют выразить коэффициент корреляции через ковариацию и стандартные отклонения. Таким образом, ковариация позволяет учесть не только относительное поведение доходностей двух активов, но и уровень риска, присущий каждому из активов. Последний выражается амплитудой колебаний доходности активов во времени, которая в свою очередь характеризуется стандартными отклонениями σi и σj.

Несложный анализ показывает, что ковариация может принимать как положительные, так и отрицательные значения. Если два актива имеют в целом позитивную корреляцию, то и отклоняться от ожидаемого значения они будут в одном направлении (положительном либо отрицательном), а значит их произведения, стоящие в правой части выражения (3.8), будут положительны. Наоборот, при негативной корреляции эти произведения будут отрицательны, что приведет к отрицательному значению всей суммы. Если изменение доходности обоих активов носит случайный характер, положительные и отрицательные слагаемые в правой части выражения (3.8) будут гасить друг друга, и значение ковариации окажется близким к нулю. Нулевым значение ковариации будет и в случае, когда хотя бы один из активов является безрисковым (см. рис. 3.3).

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)