АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Сущность средних величин

Читайте также:
  1. A)нахождение средней из двух соседних средних, для отнесения полученного результата к определенной дате
  2. I. Социально-психологическая сущность неуставных взаимоотношений
  3. IV. Далее в этой лабораторной работе необходимо создать и сохранить запрос для отображения средних цен на все товары по таблице «Товары».
  4. IV. Относительные величины, динамические ряды
  5. V. Вариационные ряды, средние величины, вариабельность признака
  6. V. Для дискретної випадкової величини Х, заданої рядом розподілу, знайти:
  7. XIV. 7. Вимірювання електрорушійних сил. Застосування методу вимірювання ЕРС для визначення різних фізико – хімічних величин
  8. А. Средняя квадратическая погрешность функции измеренных величин.
  9. Абсолютные величины
  10. АБСОЛЮТНЫЕ И ОТНОСИТЕЛЬНЫЕ ВЕЛИЧИНЫ
  11. Аграрная модернизация в начале ХХ в.: предпосылки, сущность, итоги.
  12. Аграрная реформа правительства П.А. Столыпина: предпосылки, сущность, историческое значение

Вариационные ряды отражают большое разнообразие явлений и процессов, составляющих сущность нашей действительности. Для более полного, углубленного их изучения нередко пользуются какой-то одной величиной, которая «впитывает» в себя все особенности данного ряда распределения, основные свойства изучаемой совокупности в отношении определенного признака. Это означает, что для каждого признака статистической совокупности необходимо иметь сводную, сжатую, обобщённую характеристику. Такое возможно при условии, если исчислена средняя величина.

Средняя величина – это обобщенная количественная характеристика признака в статистической совокупности. Она выражает типичное значение признака для всех единиц совокупности под влиянием всего комплекса факторов. В ней погашаются индивидуальные различия единиц совокупности в вариантах осредняемого признака.

Средняя величина – важнейшая категория статистической науки и форма обобщающих показателей. Многие явления и процессы становятся ясными, определенными, лишь будучи обобщенными в форме средних величин. Таковы, например, средняя урожайность, продуктивность животных, производительность труда, себестоимость единицы продукции, заработная плата, душевой доход и т.д.

Основное условие правильного применения средних величин – качественная однородность статистической совокупности. Средние, вычисленные для качественно неоднородной совокупности, теряют свое научное значение. Такие средние являются фиктивными, причем не только не дающими представления о действительности, но искажающими ее и вводящими в заблуждение, так как они стирают существенные различия между явлениями. Например, для характеристики среднего уровня зарплаты в сельскохозяйственной сфере АПК показатель среднего заработка в целом по экономике совершенно непригоден, так как последний в 2-3 раза выше.

Средняя величина независимо от ее вида получает следующее общее выражение:

(6.1)

Выражение (6.1) принято называть общей формулой средних величин. При разных значениях к формула (6.1) приводит к разнообразным видам средних величин.

Величина к может принимать любое из бесконечных чисел значение. Именно поэтому для каждого признака теоретически может быть рассчитано бесконечное число видов средних величин. Практически же в статистике находит применение не более десяти видов.

Каждый вид средних величин обычно имеет две формы: простую (невзвешенную) и взвешенную. Форма средних зависит от вида вариационного ряда. Так, при расчете средних по несгруппированным данным применяют простую (невзвешенную) форму; в дискретных или интервальных рядах распределения – взвешенную.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)