АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Способы аналитического выравнивания динамического рядов

Читайте также:
  1. I. Открытые способы определения поставщика.
  2. III. Способы очистки.
  3. Авторегрессионные модели временных рядов
  4. АДАПТАЦИЯ И ОСНОВНЫЕ СПОСОБЫ ПРИСПОСОБЛЕНИЯ ЖИВЫХ ОРГАНИЗМОВ К ЭКСТРЕМАЛЬНЫМ УСЛОВИЯМ СРЕДЫ
  5. Анализ вариационных рядов
  6. Анализ взаимосвязи двух временных рядов
  7. Анализ временных рядов
  8. Анализ динамики временных рядов
  9. Арифметика рядов Фибоначчи
  10. Б) СПОСОБЫ ПЕРЕВОДА СЛОВ, ОБОЗНАЧАЮЩИХ НАЦИОНАЛЬНО-СПЕЦИФИЧЕСКИЕ РЕАЛИИ
  11. Боевое крещение штурмовых отрядов
  12. Вещества, способы их выделения

Выявить общую тенденцию развития уровней динамического ряда можно с помощью различных приемов аналитического выравнивания, наиболее часто осуществляемого следующими способами: во-первых, выравниванием по прямой линии; во- вторых, по показательной кривой; в-третьих, по гиперболе; в-четвертых, по параболе второго порядка.

Способы аналитического выравнивания хотя и содержит в себе ряд условностей, но более совершенны по сравнению с рассмотренными выше приемами сглаживания уровней путем укрупнения периодов и скользящей средней. Аналитическое выравнивание облегчает выявление общей тенденции и изучение сезонных колебаний в характере динамического ряда. Выбор того иного способа аналитического выравнивания обусловлен характером (типом) динамики. Он может быть выражен в виде аналитических уравнений, которым на координатном графике соответствует определенная линия – прямая, гипербола, парабола и т.п.

Тип динамики целесообразно учитывать при выборе способов аналитического выравнивания динамических рядов. В некоторых случаях фактический ряд динамики может характеризоваться значительными колебаниями уровней, причем положительные и отрицательные цепные абсолютные приросты примерно в равной мере отклоняются от средних значений. Если динамический ряд имеет более или менее стабильные абсолютные приросты, то выравниваемый динамический ряд может быть выражен в виде прямой линии. При этом на координатном графике фактический ряд динамики целесообразно показать прямолинейно.

При выравнивании по прямой линии закономерно изменяющиеся уровни динамического ряда рассчитываются как функция времени, выражающаяся уравнением:

(9.20)

где – выровненные значения уровней ряда; t – периоды или моменты времени, к которым относятся уровни; а, в – параметры уравнения (искомой прямой).

Для расчета параметров уравнения прямой линии рекомендуется применять способ наименьших квадратов, основу которого составляет следующие требование: сумма квадратов отклонений фактических уровней ряда (У) от выровненных и лежащих на искомой линии теоретических уровней должна иметь минимальное значение, т.е.

(9.21)

Этому требованию удовлетворяет система нормальных уравнений, которые в соответствии с обозначениями формулы (10.20) могут быть записаны следующим образом:

где У – значения фактических уровней ряда динамики; t – порядковые номера периодов или моментов времени; n – число фактических уровней динамического ряда.

Систему нормальных уравнений (10.22 и 10.23) можно упростить, если срединный уровень ряда условно принять на начальный. В этом случае Σt=0, а система уравнений примет следующий вид:

откуда параметры а, в можно выразить так:

(9.26)

(9.27)

Определив параметры а, в, легко найти выравненные значения уровней и изобразить их графически в виде теоретической прямой линии.

Например, необходимо выровнять по прямой линии динамический ряд, характеризующий реализацию скота (ж.м.) откормочным комплексом «Сож» (табл. 9.9). В этой же таблице приводится и порядок определения искомых значений ΣУ, ΣУt, Σt2, которые помогут найти параметры а, в уравнения (9.20).

 

Т а б л и ц а 9.9. Аналитическое выравнивание реализации скота


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)