|
|||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Гиперболической регрессии
В качестве примера можно взять исходные данные, характеризующие зависимость себестоимости 1 кг меда от продуктивности 1 пчелосемьи по 30 сельскохозяйственным организациям. По этим данным необходимо составить и решить уравнение регрессии между указанными признаками. Себестоимость единицы продукции, представляющая комплекс всех затрат в денежной форме, разделенных на к количество продукции, можно условно расчленить на постоянную и переменную части. При этом постоянная часть расходов не зависит от объема продукции, а переменная – изменяется пропорционально ее количеству. Поэтому изменение себестоимости 1 кг продукции под воздействием продуктивности пчел теоретически можно представить в виде гиперболической регрессии. Графическое изображение зависимости с помощью координатной диаграммы показало, что основная масса точек сосредоточена в форме, близкой к гиперболической. Поэтому для составления и решения системы нормальных уравнений (9.13), (9.14) гиперболической регрессии целесообразно найти значения Σу, Расчет этих значений приведен в табл. 11.8. Т а б л и ц а 11.8. Расчет вспомогательных показателей для уравнения Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |