АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Распределения по урожайности льносоломки

Читайте также:
  1. Алгоритм открытого распределения ключей Диффи - Хеллмана.
  2. Анализ распределения и использования чистой прибыли
  3. Анализ распределения чистой прибыли
  4. Аукционный порядок распределения земельных участков.
  5. Взвешенной урожайности зерновых и зернобобовых культур
  6. ВИДЫ ЭМПИРИЧЕСКИХ графикОВ распределения
  7. Вопрос 1 Числовые характеристики статистического распределения
  8. Вопрос 2 Доверительный интервал для нормального распределения.
  9. Вопрос 2. Построение доверительного интервала при неизвестном законе генерального распределения.
  10. Выбор канала распределения. Факторы, влияющие на выбор канала распределения.. Пример выбора канала распределения.
  11. Выборочная функция распределения
  12. Генерация случайных чисел по различным законам распределения

 

№ п.п. Интервалы по урожайности, ц/га Локальные частоты Средние варианты интервалов Взвешенные средние варианты
Символы Посевная площадь, га Символы Урожайность, ц/га Символы Валовой сбор, т
    f   х   xf  
  30-40 f1   х1   Х1f1  
  40-50 f2   х2   X2f2  
  50-60 f3   х3   X3f3  
  60-70 F4   х4   X4f4  
Σ Итого Σf   - - Σ xf  

 

Для нахождения среднего значения признака в интервальном ряду распределения необходимые данные, приведённые в табл. 6.3, подставим в формулу (6.4), получим:

Это означает, что средняя урожайность льносоломки в сельскохозяйственных организациях района составляет 48,3 ц/га.

Если интервальный ряд, используемый для вычисления средней варианты, содержит открытые интервалы, то центры этих интервалов могут быть рассчитаны исходя из предположения, что размеры открытых интервалов совпадают с размерами последующих или предыдущих интервалов, непосредственно к ним примыкающих. При этом срединное значение первого (верхнего) открытого интервала может быть найдено путем вычитания из середины второго интервала величины этого интервала, а срединное значение последнего (нижнего) открытого интервала – прибавлением к середине предпоследнего интервала величины этого же интервала.

Необходимо иметь в виду, что исчисление средней арифметической величины по данным интервального ряда распределения не всегда является абсолютно правильным. Это объясняется неравномерным распределением вариант внутри интервала, в качестве же множителя х для каждого интервала используется его середина. Кроме того, при наличии открытых интервалов к этому добавляются неточности, связанные с установлением неизвестных границ. Поэтому рассмотренный способ расчёта средней варианты для интервального ряда целесообразно применять лишь в тех случаях, когда отсутствуют данные о значениях признака для всей совокупности в целом. При наличии же таких данных точное значение средней варианты может быть получено способом расчёта для дискретного ряда распределения.

В системе АПК средняя арифметическая величина (простая и взвешенная) широко применяется при расчёте многочисленных средних показателей, характеризующих наличие и использование производственного потенциала: средней площади землепользования, посевной площади, урожайности, поголовья, продуктивности животных, численности работников, производительности труда, себестоимости продукции, уровня рентабельности и многих других показателей.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)