АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос 3. называется угловой скоростью тела

Читайте также:
  1. II. Вопросительное предложение
  2. VII. Вопросник для анализа учителем особенностей индивидуального стиля своей педагогической деятельности (А.К. Маркова)
  3. X. примерный перечень вопросов к итоговой аттестации
  4. Аграрный вопрос
  5. Болгарский вопрос. Соборы на Западе на Востоке. Окончательное разделение 1054 года
  6. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  7. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  8. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  9. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 10 страница
  10. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 10 страница
  11. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 11 страница
  12. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 11 страница

Векторная величина

(2.1)

называется угловой скоростью тела. Вектор направлен вдоль мгновенной оси вращения в сторону, определяемую правилом винта, т.е. также как вектор элементарного поворота . Модуль вектора угловой скорости равен . Вращение с постоянной угловой скоростью называется равномерным, при этом:

т.е. при равномерном вращении показывает, на какой угол поворачивается тело за единицу времени.

В случае неравномерного движения не остается постоянной. Величина, характеризующая скорость изменения угловой скорости называется угловым ускорением и равна:

(2.5)

В случае вращения тела вокруг
неподвижной оси изменение вектора обусловлено только изменением его численного значения. При этом вектор углового ускорения направлен вдоль оси вращения в ту же сторону, что и при ускоренном вращении и при замедленном в обратном направлении. (рис 2.3 а),б))

 

Отдельные точки вращающегося тела имеют различные линейные скорости . Скорость каждой точки, будучи направлена по касательной к соответствующей окружности, непрерывно изменяет свое направление. Величина скорости определяется скоростью вращения тела и расстоянием R рассматриваемой точки от оси вращения. Пусть за малый промежуток времени тело повернулось на угол (рис 2.4). Точка, находящаяся на расстоянии R от оси проходит при этом путь, равный

Линейная скорость точки по определению.

  (2.6)

Найдем линейные ускорения точек вращающегося тела. Нормальное ускорение:

подставляя значение скорости из (2.6), находим:

(2.7)

Тангенциальное ускорение

Воспользовавшись тем же отношением (2.6) получаем

    (2.8)

Таким образом, как нормальное, так и, тангенциальное ускорения растут линейно с расстоянием точки от оси вращения.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)