АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос 5. Второй закон Ньютона можно записать в другой форме

Читайте также:
  1. II. Вопросительное предложение
  2. VII. Вопросник для анализа учителем особенностей индивидуального стиля своей педагогической деятельности (А.К. Маркова)
  3. X. примерный перечень вопросов к итоговой аттестации
  4. Аграрный вопрос
  5. Болгарский вопрос. Соборы на Западе на Востоке. Окончательное разделение 1054 года
  6. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  7. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  8. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 1 страница
  9. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 10 страница
  10. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 10 страница
  11. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 11 страница
  12. Более подробно вопрос об объектах экологических общественных отношений рассмотрен в главе II учебника. 11 страница

Второй закон Ньютона можно записать в другой форме. Согласно определению:

,

тогда

 

или

Вектор называется импульсом или количеством движения тела и совпадает по направлению с вектором скорости , а выражает изменение вектора импульса.

Преобразуем последнее выражение к следующему виду:

(3.6)

Вектор называется импульсом силы .

Это уравнение является выражением основного закона динамики материальной точки: изменение импульса тела равно импульсу действующей на него силы.

Используя уравнения:

и ,

можем записать

или

(3.12)

Таким образом, центр инерции механической системы движется как материальная точка, масса которой равна массе всей системы и на которую действует сила, равная главному вектору внешних сил, приложенных к системе. В общем случае движение твердого тела можно рассматривать как сумму двух движений: поступательного со скоростью , равной скорости центра инерции тела, и вращения вокруг центра инерции. Поэтому последнее уравнение часто называют основным уравнением динамики поступательного движения твердого тела.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)