|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основные теоретические положения3.1. Явление взаимной индукции. Взаимной индукцией называется явление наведения ЭДС в одном из участков электрической цепи вследствие изменения тока, протекающего по другому участку. Потокосцепление взаимной индукции:
![]() где
Рис.1 При постоянной магнитной проницаемости среды, в которой создается магнитное поле, величина взаимной индуктивности зависит только от числа витков обеих катушек, от конструкции и взаимного расположения катушек. Потоки самоиндукции катушек ( Поэтому различают согласное и встречное включение индуктивно-связанных катушек. При согласном включении полная ЭДС первой катушки равна:
![]()
При встречном включении имеем:
![]()
![]() Или в комплексной форме:
![]()
Часто в уравнениях цепи вместо ЭДС индукции записывают напряжения, уравновешивающие эти ЭДС:
Тогда уравнения (6) можно переписать в виде:
![]()
Если собственная индуктивность Связь между двумя катушками с собственными индуктивностями
![]() причем
На схемах электрических цепей принято обозначать (маркировать) начала обмоток определенным значком, например звездочкой (*). Рис.2 Тогда для учета знака напряжения взаимоиндукции применяют следующее правило. Если выбранные положительные направления токов в катушках одинаково ориентированы относительно звездочек (т.е. начал обмоток), то знаки напряжений самоиндукции и взаимной индукции одинаковы, если нет – знаки противоположны.
![]() Рис.3 Примечание: В этом случае взаимоиндуктивность должна быть задана по величине и знаку. 3.2. Последовательное соединение индуктивно-связанных катушек: Рис.4 Для схемы рис.4 имеем одинаковую ориентацию токов относительно звездочек, т.е. согласное включение:
![]()
Отсюда эквивалентные сопротивления последовательной цепи
![]() На основании выражений (12), (13) и (14) легко установить, что при согласном включении катушек, индуктивная связь увеличивает эквивалентные реактивные сопротивления обеих катушек и всей цепи в целом, а при встречном включении, наоборот, уменьшает. Представляет интерес случай, когда 3.3. Параллельное соединение индуктивно-связанных катушек. Рис.5 Для параллельного соединения справедливы следующие соотношения:
![]() где знак «+» относится к согласному включению, а знак «-«к встречному включению. Обозначив
![]()
Отсюда определим выражения для эквивалентных комплексных сопротивлений обеих ветвей и всей цепи в целом:
![]() где в знаменателе знак «-» соответствует согласному включению, а знак «+» - встречному. Составим выражение для баланса мощностей. Комплексные мощности первой и второй катушек определяются таким образом:
![]()
В выражении (18) Записав выражения для токов в виде: Получим
![]() ![]() Отсюда следует, что:
![]() Из этих выражений видно, что в общем случае полные мощности, соответствующие потоку взаимной индуктивности катушек, имеют активные и реактивные составляющие. Их величина и знак зависят от схемы включения и параметров катушек. Что касается активных мощностей, то из (20) следует, что
т.е. путем взаимной индукции происходит односторонняя передача активной мощности из одной катушки в другую. Для получения баланса мощностей подставим (19) в (18):
![]()
Рассмотрим баланс активных мощностей в двух частных случаях. 3.3.1. Соединение встречное.
![]() ![]()
т.е. сеть доставляет мощность
т.е. сеть доставляет во вторую катушку мощность 3.3.2. Соединение согласное
Из (20) получаем:
Значит мощность передается из первой катушки во вторую:
![]()
3.4. Экспериментальное определение взаимной индуктивности. Взаимную индуктивность можно определять двумя способами: 3.4.1. По величине ЭДС взаимной индукции. Для определения М используется соотношение:
![]() где 3.4.2. Последовательным соединением при согласном и встречном включении катушек. Тогда для согласного включения: для встречного Вычитая одно равенство из другого получаем выражение для
![]()
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.012 сек.) |