АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Элементы регрессионного анализа

Читайте также:
  1. B) должен хорошо знать только физико-химические методы анализа
  2. II. ИСТОРИЯ НАШЕЙ КАНАЛИЗАЦИИ
  3. IV. Схема анализа внеклассного мероприятия
  4. V1: Методы анализа электрических цепей постоянного тока
  5. V1: Переходные процессы в линейных электрических цепях, методы анализа переходных процессов
  6. XI. ПРИСПОСОБЛЕНИЕ И ДРУГИЕ ЭЛЕМЕНТЫ, СВОЙСТВА. СПОСОБНОСТИ И ДАРОВАНИЯ АРТИСТА
  7. Абсолютизм. Общая характеристика. Особенности стиля. Используемые композиционные решения, конструктивные элементы и строительные материалы. Ключевые здания. Ключевые архитекторы.
  8. Автономная канализация
  9. Алгоритм хода анализа смеси катионов I группы
  10. Анализ показателей оплаты труда и влияющих на них факторов. Документация для анализа использования фонда оплаты труда.
  11. Анализ существующих учебных материалов и их отбор на основе анализа.
  12. АНАЛИЗА ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ

После того, как установлено наличие корреляционной связи между двумя изучаемыми признаками (явлениями), можно попытаться установить закономерность зависимости одного признака , являющегося в нашем случае функцией, от другого (аргумента). Зная закономерность , можно в дальнейшем прогнозировать течение процесса, обладающего признаками и , изучать его динамику.

       
   
 

Чтобы получить уравнение , требуется аппроксимировать (лат. approximare – приближаться) эмпирическую линию регрессии (ЭЛР), которую получают путем соединения точек диаграммы (рис. 10) подходящей теоретической линией регрессии (ТЛР).

а б

Рис. 10

На рис.10 а) показана нелинейная связь между величинами, а на рис.10.б) – линейная.

Выше мы говорили о простейшей корреляционной связи – линейной. Поэтому все внимание обратим на рис. 10 б. Для этого случая уравнение связи следует искать в виде теоретического уравнения прямой:

.

Для того чтобы получить конкретное уравнение связи необходимо определить коэффициенты a и b. Определение коэффициентов уравнения ТЛР производится различными способами, самым точным из них является метод наименьших квадратов. Название метода происходит из основного требования замены ЭЛР на ТЛР – аппроксимация будет осуществлена наилучшим образом, если ТЛР наилучшим образом будет приближаться к ЭЛР, в этом случае сумма отклонений значений функции из уравнения ТЛР – yТ от значений функции в эксперименте – yЭ (для одного и того же значения аргумента x) будет минимальной:

.

Для устранения влияния знака разности берут квадраты:

,

но , тогда можно записать:

.

Известно, что если функция в некоторой точке имеет минимум, то производная ее в этой точке равна 0. Поэтому приравниваем нулю производные суммы по параметрам a и b. Полученную систему уравнений решаем относительно a и b. Полученные значения коэффициентов подставляем в уравнение и получаем уравнение теоретической линии регрессии, наилучшим образом описывающее закон связи коррелирующих признаков x и y.

Поиск аппроксимирующего уравнения – это искусство, которым можно овладеть, только в результате накопления большого опыта. На помощь экспериментаторам в настоящее время пришли многочисленные программы для обработки экспериментальных данных. В частности, кривую ТЛР на рис. 10 а) можно описать при помощи уравнения

Конечно, без помощи вычислительной машины и соответствующих программ найти все коэффициенты в этом уравнении довольно трудно. Но вряд ли даже исследователь будет пользоваться этим уравнением: слишком много параметров. Оказывается можно подобрать несколько кривых ТЛР (теоретической линии регрессии). При обработке экспериментальных данных исследователю помогает еще здравый смысл, представление о возможном характере взаимосвязи величин. Все это позволяет выбрать наиболее подходящее уравнение для описания полученных экспериментальных закономерностей.

Чаще при обработке эксперимента на начальном этапе исследователь ограничивается графическим проведением ТЛР с учетом метода наименьших квадратов: кривая должна быть плавной и равноотстоять от всех экспериментальных точек.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)