АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифференцирование сложной функции

Читайте также:
  1. V2: Электронные таблицы. Встроенные функции.
  2. Активный и пассивный словарь. Историзмы и архаизмы. Типы архаизмов. Стилистические функции.
  3. Анатомия пищев.канала: отделы,сфинктеры и клапаны,их положение,строение и значение для пищев.функции.
  4. Булевы функции.
  5. Военная политика государства, её сущность, структура и функции.
  6. Вопрос 4. Производная сложной функции. Полная производная
  7. Выделение лишь одной группы дубликатов внутри сложной летописи
  8. Выпуклость и вогнутость графика функции. Точки перегиба. Асимптоты.
  9. Выражение векторов поля через потенциальные функции. E- и H-моды
  10. Вычисление пределов функции. Непрерывность функции.
  11. Глава VII. Об одной сложной ипостаси Бога Слова
  12. Д) подготовиться к более сложной задаче - выполнению выпускной квалификационной работы.

 

Пусть и - дифференцируемые функции. Тогда сложная функция есть также дифференцируемая функция, причем

.

Это правило распространяется на цепочку из любого конечного числа дифференцируемых функций: производная сложной функции равна произведению производных функций, ее составляющих.

Рассмотрим несколько примеров нахождения производной сложной функции.

Пример 1.

Положим , где .

Тогда

.

 

Пример 2.

.

Обозначим . Тогда .

По правилу дифференцирования сложной функции имеем:

.

 

Пример 3.

.

Обозначим . Тогда .

По правилу дифференцирования сложной функции имеем:

= .

 

Пример 4.

.

Положим . Тогда .

.

 

Пример 5.

.

Если , то . Следовательно

.

 

Пример 6.

.

Положим , где , а .

Получаем

= .

 

Пример 7.

<1.

Если то , следовательно,

Выполним алгебраические преобразования и получим окончательно

.

Пример 8.

Имеем

Найти производные следующих сложных функций:

 

2.81. (Ответ: ) 2.82. (Ответ: )
2.83. (Ответ: ) 2.84. (Ответ: )
2.85. (Ответ: ) 2.86. (Ответ: )
2.87. (Ответ: ) 2.88. (Ответ: )
2.89. (Ответ: ) 2.90. (Ответ: )
2.91. (Ответ: ) 2.92. (Ответ: )
2.93. (Ответ: ) 2.94. (Ответ: )
2.95. (Ответ: ) 2.96. (Ответ: )
2.97. (Ответ: ) 2.98. (Ответ: )
2.99. (Ответ: )   2.100. (Ответ: )
2.101. (Ответ: ) 2.102. (Ответ: )
2.103. (Ответ: ) 2.104. (Ответ: )
2.105. (Ответ: ) 2.106. (Ответ: )  
2.107. (Ответ: ) 2.108. (Ответ: )
2.109. (Ответ: ) 2.110. (Ответ: )
2.111. (Ответ: ) 2.112. (Ответ: )
2.113. (Ответ: ) 2.114. (Ответ: )
2.115. (Ответ: ) 2.116. (Ответ: )
2.117. (Ответ: ) 2.118. (Ответ: )
2.119. (Ответ: ) 2.120. (Ответ: )
2.121. (Ответ: ) 2.122. (Ответ: )
2.123. (Ответ: ) 2.124. (Ответ: )
2.125. (Ответ: ) 2.126. (Ответ: )

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)