АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Интервальная оценка. Интервальная оценка

Читайте также:
  1. D.2 Оценка практического экзамена на 1-й и 2-й уровни – руководящие указания по взвешенным процентам
  2. II. Оценка располагаемых водных ресурсов объекта.
  3. V этап. Оценка результатов
  4. V этап. Оценка результатов
  5. V этап. Оценка результатов
  6. V этап. Оценка результатов
  7. VII. ОЦЕНКА СЕЛЬХОЗУГОДИЙ
  8. Анализ и оценка налоговой нагрузки при применении специальных налоговых режимов
  9. Анализ ликвидности и оценка платежеспособности ООО « » за период 2003-2005гг.
  10. Анализ показателей ликвидности предприятия. Расчет и оценка финансовых коэффициентов ликвидности
  11. Анализ состава, структуры и динамики источников формирования имущества. Оценка рыночной устойчивости предприятия.
  12. Аттестация и деловая оценка персонала

при малой выборке. Распределение Стьюдента

Точечная оценка, особенно при малой выборке, может значительно отличаться от истинных параметров генеральной совокупности. При небольшом объеме выборки пользуются интервальными оценками.

В этом случае указывается интервал (доверительный интервал или доверительные границы), в котором с определенной (доверительной) вероятностью , которую иногда называют «надежностью», находится истинное значение исследуемой или измеряемой величины, например, среднее значение генеральной совокупности.

Иначе говоря, определяет вероятность, с которой осуществляются следующие неравенства:

,

где положительное число характеризует точность оценки. Интервал значений от до называется доверительным интервалом. Разумеется, чем большей надежности мы требуем, тем большим получается доверительный интервал и, наоборот, чем больший доверительный интервал мы задаем, тем вероятнее, что результаты измерений не выйдут за его пределы.

Сказанное выше относилось к большому числу измерений. При малом числе измерений (условно будем считать, что при n <30) распределение случайных величин носит несколько отличный от закона нормального распределения характер. Это распределение было выявлено в 1908 году английским математиком Госсетом, опубликовавшим работу на эту тему под псевдонимом «Стьюдент» -студент. Естественно, что при данной надежности доверительный интервал при малом числе измерений в серии должен быть шире, чем при большом числе измерений (чем меньше число измерений, тем больше среднее число измерений отличается от математического ожидания) и должен зависеть не только от , но и от n. Учитывая это, было предложено, в случае небольшого числа измерений, полуширину доверительного интервала (отклонение выборочного среднего от генерального среднего вычислять через S и некоторый параметр , который называется коэффициентом Стьюдента и который выбирается по заданным и n по таблицам (см. табл.1):

,

но тогда < .

 

Таблица 1

Значение коэффициента Стьюдента

 

n a 0.95 0.99 0.999 n a 0.95 0.99 0.999
  12.706 63.657 636.619   2.103 2.878 3.922
  4.303 9.925 31.598   2.093 2.861 3.883
  3.182 5.841 12.941   2.086 2.845 3.850
  2.776 4.604 8.610   2.080 2.831 3.819
  2.571 4.032 6.859   2.074 2.819 3.792
  2.447 3.707 5.950   2.069 2.807 3.767
  2.365 3.499 5.405   2.064 2.797 3.745
  2.306 3.355 5.041   2.060 2.787 3.725
  2.262 3.250 4.781   2.056 2.779 3.707
  2.228 3.169 4.587   2.052 2.771 3.690
  2.201 3.106 4.487   2.048 2.763 3.674
  2.179 3.055 4.318   2.045 2.756 3.659
  2.160 3.012 4.221   2.042 2.750 3.646
  2.145 2.977 4.140   2.021 2.704 3.551
  2.131 2.947 4.073   2.000 2.660 3.460
  2.120 2.921 4.015   1.980 2.617 3.374
  2.110 2.898 3.965 ¥ 1.960 2.576 3.291

Анализ табл. 1 для значений коэффициента Стьюдента показывает, что при числе наблюдений 30 и более (большая выборка) при доверительной вероятности 0,95 он оказывается равным 2, при доверительной вероятности 0,997 - Это означает, что для большой выборки мы опять пришли к нормальному закону распределения или, другими словами, распределение Стьюдента перешло в распределение Гаусса. Приведем (рис.3) график зависимости коэффициента Стьюдента от числа измерений для , который хорошо иллюстрирует только что сделанный вывод. Достаточно хорошо аппроксимировать его можно зависимостью:

.

 
 

Рис. 3

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)