АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тема №22 (время – 3 мин)

Читайте также:
  1. Тема №1 (время – 1 мин)
  2. Тема №11 (время – 3 мин)
  3. Тема №12 (время – 5 мин)
  4. Тема №14 (время – 1 мин)
  5. Тема №16 (время – 3 мин)
  6. Тема №17 (время – 2 мин)
  7. Тема №18 (время – 2 мин)
  8. Тема №19 (время – 2 мин)
  9. Тема №2 (время – 2 мин)
  10. Тема №20 (время – 6 мин)
  11. Тема №21 (время – 2 мин)

Тема: Графы. Поиск путей

Что нужно знать:

· если в город R можно приехать только из городов X, Y, и Z, то число различных путей из города A в город R равно сумме числа различных путей проезда из A в X, из A в Y и из A в Z, то есть

,

где обозначает число путей из вершины A в некоторую вершину Q

· число путей конечно, если в графе нет циклов – замкнутых путей

Пример задания:

На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

Решение (1 вариант, подстановки):

38) начнем считать количество путей с конца маршрута – с города К

39) будем обозначать через NX количество различных путей из города А в город X

40) общее число путей обозначим через N

41) по схеме видно, что NБ = NГ = 1

42) очевидно, что если в город X можно приехать только из Y, Z, то NX = NY + N­Z, то есть нужно сложить число путей, ведущих из A во все города, откуда можно приехать в город X

43) поскольку в K можно приехать из Е, Д, Ж или И, поэтому

N = N­К = NД + NЕ + NЖ + NИ

44) в город И можно приехать только из Д, поэтому NИ = NД

45) в город Ж можно приехать только из Е и В, поэтому

Ж = NЕ + NВ

46) подставляем результаты пп. 6 и 7 в формулу п. 5:

N = NВ + 2NЕ + 2NД

47) в город Д можно приехать только из Б и В, поэтому

Д = NБ + NВ

так что

N = 2NБ + 3NВ + 2NЕ

48) в город Е можно приехать только из Г, поэтому N­Е = NГ так что

N = 2NБ + 3NВ + 2NГ

49) по схеме видно, что NБ = NГ = 1, кроме того, NВ = 1 + N­Б + NГ = 3

50) окончательно N = 2NБ + 3NВ + 2NГ = 2·1 + 3·3 + 2·1 = 13

51) Ответ: 13.

Решение (2 вариант, удобная форма записи):

1) начнем считать количество путей с конца маршрута – с города К

2) записываем для каждой вершины, из каких вершин можно в нее попасть

К ИДЖЕ

И Д

Ж ВЕ

Е Г

Д БВ

Г А

В АБГ

Б А

3) теперь для удобства «обратного хода» вершины можно отсортировать так[17], чтобы сначала шли все вершины, в которые можно доехать только из начальной точки А:

Б А

Г А

затем на каждом шаге добавляем те вершины, в которые можно доехать из уже добавленных в список (и из исходной точки):

В АБГ

Е Г

далее добавляем все вершины, куда можно доехать из А, Б, Г, В и Е:

Д БВ

Ж ВЕ

на следующем шаге добавляем вершину И

И Д

и, наконец, конечную. вершину

К ИДЖЕ

именно в таком порядке мы и будем вычислять количество путей для каждой вершины

4) теперь идем по полученному списку вершин, полагая, что количество вариантов попасть в вершину равно суммарному количеству вариантов попасть в ее непосредственных предшественников.

NБ = 1, NГ = 1

NВ = 1+1+1 = 3, NЕ = 1

NД = 1+3 = 4, NЖ = 3 + 1 = 4

NИ = 4,

N = NК = 4 + 4 + 4 + 1 = 13

5) заметим, что вершины можно и не сортировать специально, а просто выбирать возможный порядок вычисления: проверять, какие значения известны и какие можно рассчитать с их помощью на следующем шаге

6) Ответ: 13.

Возможные ловушки и проблемы: · очень важна аккуратность и последовательность; сначала идем от конечной точки к начальной, выписывая все вершины, из которых можно приехать в данную; затем идем обратно, определяя числовые значения · построение полного дерева маршрутов – занятие трудоемкое и достаточно бесперспективное, даже грамотные учителя информатики здесь в большинстве случаев что-то забывают и ошибаются

Решение (3 вариант, перебор вершин по алфавиту):

1) Запишем вершины в алфавитном порядке и для каждой из них определим, из каких вершин можно в нее попасть

Б А

В АБГ

Г А

Д БВ

Е Г

Ж ВЕ

И Д

К ИДЖЕ

2) теперь определяем количество путей; сначала ставим 1 для тех вершин, в которые можно проехать только из начальной (А):

вершина откуда? N
Б А  
В АБГ  
Г А  
Д БВ  
Е Г  
Ж ВЕ  
И Д  
К ИДЖЕ  

3) затем на каждом шаге добавляем те вершины, в которые можно доехать из уже добавленных в список (и из исходной точки):

вершина откуда? N
Б А  
В АБГ  
Г А  
Д БВ  
Е Г  
Ж ВЕ  
И Д  
К ИДЖЕ  

4) следующий шаг

вершина откуда? N
Б А  
В АБГ  
Г А  
Д БВ  
Е Г  
Ж ВЕ  
И Д  
К ИДЖЕ  

5) и последние 2 шага

вершина откуда? N
Б А  
В АБГ  
Г А  
Д БВ  
Е Г  
Ж ВЕ  
И Д  
К ИДЖЕ  

6) Ответ: 13.

Решение (4 вариант, перебор всех путей с начала, А. Яфарова):

1) запишем все вершины, в которые есть прямой путь из вершины A: Б, В и Г; получается три начальных отрезка:

АБ, АВ, АГ

2) рассмотрим маршрут АБ: из Б можно ехать в В и Д, поэтому получаем два маршрута:

АБ В, АБ Д

3) рассматриваем конечные точки этих маршрутов: из В можно ехать в Д и Ж, а из Д – в И и К:

АБВ Д, АБВ Ж, АБД И, АБД К

4) снова смотрим на конечные точки: из Д едем в И и К, из Ж и И – только в К:

АБВД И, АБВД К, АБВЖ К, АБДИ К, АБДК

5) из И едем только в К, таким образом, все возможные маршруты, содержащие участок АБ, доведены до конечной точки К, всего 5 таких маршрутов:

АБВДИ К, АБВДК, АБВЖК, АБДИК, АБДК

6) затем аналогично рассматриваем маршруты, которые начинаются с АВ:

АВД, АВЖ

АВДИ, АВДК, АВЖК

АВДИК, АВДК, АВЖК

всего 3 маршрута

7) наконец, остается рассмотреть маршруты, которые начинаются с АГ:

АГВ, АГЕ

АГВД, АГВЖ, АГЕЖ, АГЕК

АГВДИ, АГВДК, АГВЖК, АГЕЖК, АГЕК

АГВДИК, АГВДК, АГВЖК, АГЕЖК, АГЕК

всего 5 маршрутов

8) складываем количество маршрутов для всех начальных участков: 5 + 3 + 5 = 13

9) Ответ: 13.

Возможные проблемы: · при большом количестве маршрутов легко запутаться и что-то пропустить

Решение (5 вариант, графический, О.О. Грущак, КузГПА):

1) Главную идею решения: (число дорог в город N есть сумма дорог, приводящих в города, из которых есть прямой проезд в город N), отразим на самой схеме, показывая на ней ЧИСЛО ДОРОГ, приводящих в каждый город.

2) Последовательность очевидна: начинаем с Б и Г (городов, куда есть по 1-й дороге из А)

3) Посчитаем дороги в В: 1 (из A)+ 1(дороги города Б)+ 1(дороги города В)= 3

4) Аналогично посчитаем дороги в Д, И, Е, Ж:

5) Определяем число дорог в город К, как сумму дорог в города, с которыми он связан: Д, И, Ж, Е.

6) Ответ: 13.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)