|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вверх вниз влево вправо. При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх ↑При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно: вверх ↑, вниз ↓, влево ←, вправо →. Четыре команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ: Сверху свободно снизу свободно слева свободно справа свободно Цикл ПОКА <условие> команда выполняется, пока условие истинно, иначе происходит переход на следующую строку. Сколько клеток приведенного лабиринта соответствуют требованию, что, выполнив предложенную ниже программу, РОБОТ уцелеет (не врежется в стену)? 1) 1 2) 13 3) 21 4) 39 НАЧАЛО ПОКА <снизу свободно> вниз ПОКА <слева свободно> влево Вверх Вправо КОНЕЦ
Решение: 1) нарисуем примерный путь Робота в соответствии с программой; вот три варианта, когда Робот не разбивается:
здесь ключевые клетки – две стенки (слева и снизу) и три ярко-зеленых клетки, которые должны быть свободны 2) теперь ищем на карте участки, где есть все ключевые клетки (они выделены на рисунке):
обратите внимание, что в двух случаях нижняя «ключевая» стенка имеет длину больше 1 (темно-коричневый цвет), то есть Робот может спускаться по разным линиям. 3) теперь осталось подсчитать все клетки, спускаясь из которых Робот упирается в темно-коричневые стенки: 4) подсчет показывает, что их 39 штук; 5) поэтому правильный ответ – 4.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |