|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Неотрицательные матрицыМатрица Квадратные матрицы такого типа возникают во множестве задач, и это определяющее свойство приводит к сильным результатам об их строении. Теорема Фробениуса – Перона является основным результатом для неотрицательных матриц. Пусть матрицы Вспомним матрицу перестановки DF При Понятие приводимости имеет значение при решении матричных уравнений
Таким образом, если А — приводима, то решение уравнения высокого порядка сводится к решению уравнений более низкого порядка, причем собственные значения матриц А11 и А22 в своей совокупности составляет множество значений матрицы А. Интересно, что явление приводимости не связано с величиной матрицы, а зависит лишь от расположения нулевых элементов в матрице. В связи с этим используют идею направленного графа матрицы, которую можно взять в качестве характеризации неприводимости матрицы. Наметим первые шаги тории и получим вторую характеризацию неприводимости матриц. DF Пусть р1, р2, …, рn-n различных точек комплексной плоскости и Например:
DF Говорят, что любой направленный граф связен, если для каждой пары точек Легко доказать, что квадратная матрица неприводима тогда и только тогда, когда ее граф является связным. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.129 сек.) |