|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Структурообразователи
Промывочные жидкости – дисперсные системы, в которых, в качестве дисперсной фазы выступают тонкодисперсные частицы (структурообразователь), а в качестве дисперсионной среды чаще всего вода. Под воздействием поверхностной энергии частиц вокруг каждой из них образуется плотный гидратный (адсорбированный) слой с повышенной прочностью структуры (гидрогель – водяная гель). Для получения значительного количества гидрогеля необходимо иметь тонкодисперсный материал, который либо получают в растворах при взаимодействии различных электролитов при образовании нерастворимых гидрофильных микрокристаллов, либо используют самодиспергирующие минералы в воде способные расщепляться на мелкие гидрофильные частицы, чаще всего это глинистые минералы: монтморилонит, иллит, каолинит, палыгорскит и др. Способность этих минералов к самодиспергированию обусловлена специфическим строением их кристаллических решеток. Наиболее эффективным структурообразователем является монтмориллонит NaSi4O10 (Al, Mg, Fe)2(OH)2. Образуется он при выветривании основных пород (пироксенитов, горнблендитов, вулканических пеплов и т.д.) в щелочной среде. В процессе выветривания ленты кремнекислородных тетраэдров пироксенов и амфиболов объединяются в листы, а катионы, насыщенные в щелочной среде гидроксильными группами А1(ОН)+2 прочно связывают эти листы и пакеты. Вместо А1(ОН)+2 связывание листов может производиться катионами FeOH2+ и MgOH+. Пакеты между собой связываются обменными катионами Н, К, Na, Mg, Са. В результате большого многообразия условий образования минерала химический состав его непостоянный: SiO2-34...59%, А12О3 - 1...28%; MgO -3...31%,Fe2O5-0...29%. В связи с большим количеством замещений катионов высокой валентности (AlOH2+, FeOH2+) катионами более низкой валентности (MgOH2+) на поверхности пакетов появляется заряд, который компенсируется обменными катионами. Обменные катионы связывают пакеты между собой в виде тонкодисперсных (землистых) агрегатов неправильной формы. Существенное влияние на прочность связей между пакетами оказывает межмолекулярное взаимодействие. В натриевых монтморилонитах в качестве обменного катиона преобладают катионы Na, которые с пакетами образуют слабуюионную связь (подобно связям ионов в поваренной соли). Такие монтморилониты легко диспергируют в воде на ионы и глинистые частицы: SiONa à SiO - + Na +. В кальциевых монтморилонитах связь между пакетами осуществляется с помощью обменных катионов Са, имеющих более высокий заряд и образующих более прочные связи. Вследствие этого диспергирование таких агрегатов в воде происходит значительно труднее. При добавлении в раствор кальцинированной сода Na2СО3 ионы Са+2 из-за его большого сродства с анионами СО2- выпадают в осадок, а агрегаты, связанные только ионами Na+, легко диспергируют в растворе. Палыгорскит имеет ту же форму, что и монтмориллонит, NaSi4O10 (Al,Mg)2 (ОН)2, но имеет ленточную структуру, как и минералы, из которых он образовался (пироксены, амфиболы). Образуется он в солёной среде (солёных озёрах, лагунах) при наличии жаркого климата. Кристаллизация минерала в условиях высокой засоленности обусловила цепочную форму кристаллов и их устойчивость в солёной воде. В отличие от монтмориллонита, образованного в благоприятных условиях (щелочной среде) цепочки кремнекислородных тетраэдров не смогли объединиться в листы кремнекислородных тетраэдров. Вследствие вытянутой фермы кристаллов палыгорскита величина их контактов в растворе невелика, поэтому они не могут слипаться друг с, другом. Функциональные группы =А1(ОН)2, ºSiOH. Иллит - листовой силикат, по химическому составу и структуре аналогичен монтмориллониту. Отличается от него тем, что в слое кремнекислородных тетраэдров SiO наблюдается замещение Si2O5-2 на А12О54- (одно замещение из четырёх) отчего на поверхности листа появляются некомпенсированные заряды, что увеличивает взаимодействие между пакетами и уменьшает растворимость минерала в воде. Образуется иллит при выветривании полевых шпатов в щелочной среде. Функциональные группы =А1ОН, ºSiOH. Каолинит Si2O5AlO2(OH)2 - листовой силикат, образуется из калиевых шпатов в результате их выветривания в кислой среде (при наличии воды и углекислоты): 2KАlO23SiO2 + 2H2O + CO2 = Si2O52Al(OH)2 + 4SiO2 + K2CO3 калиевый шпат угольная кислота Легкорастворимый поташ К2СО3 уносится водой, а избыток кремнекислоты 4SiO2 образует кварц. Каолинит представляет собой двухслойную структуру, состоящую из слоя кремнекислородных тетраэдров SI2O5 гидраргилитового слоя А1(ОН)2+ Благодаря большому количеству гидроксильных групп в пакетах между ними возникают сильные водородные связи, поэтому каолинит трудно диспергирует в воде. Каолинит также, как и монтморилонит и иллит, имеет в растворе тонкодисперсные и землистые агрегаты неправильной формы, но у каолинита чешуйки встречается чаще, чем у вышерассмотренных минералов. Асбест (хризолит) MgSi4O10(OH)8 - ленточный силикат, образуется при гидротермальном изменении ультраосновных пород (дунита переодотита), представляет собой, подобно палыгорскиту, два слоя кремнекислородных тетраэдров, связанных бруситовым слоем Mg(OH)2. В отличие от палыгорскита имеет длинноволокнистую структуру. Солестоек, обладает высокой несущей способностью. В отличие от глинистых минералов гидрофобный (полярные группы внутри кристалла нейтрализуют поверхностный заряд кремнекислородных тетраэдров), поэтому обладает низкой вязкостью и водоотдачей. Относится к опасным минералам, вреден для здоровья человека. Качество глины характеризуется обменной емкостью, эффективной удельной поверхностью (дисперсностью) и гидрофильностью, определяемой по теплоте смачивания. Ниже приводится таблица физико-химических характеристик глинистых минералов. Таблица 2.1 Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |