АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Механизм увлажнения и набухания глин

Читайте также:
  1. E согласно механизму сотрудничества с системами фермента.
  2. II.1.4. Семантический механизм создания образного сравнения
  3. L.3.2. Процессы присоединения частиц. Механизмы роста.
  4. АДАПТАЦИЯ К ЗУБНЫМ ПРОТЕЗАМ КАК ПРОЯВЛЕНИЕ ПЛАСТИЧНОСТИ НЕРВНЫХ ЦЕНТРОВ. МЕХАНИЗМЫ АДАПТАЦИИ. РОЛЬ РЕЦЕПТОРОВ СЛИЗИСТОЙ ОБОЛОЧКИ ПОЛОСТИ РТА В АДАПТАЦИИ К ЗУБНЫМ ПРОТЕЗАМ.
  5. Анализ эффективности применяющихся глинистых растворов для бурения уплотненных глин.
  6. БИОМЕХАНИЗМ РОДОВ В ЗАДНЕМ ВИДЕ ЗАТЫЛОЧНОГО ПРЕДЛЕЖАНИЯ
  7. БИОМЕХАНИЗМ РОДОВ В ПЕРЕДНЕМ ВИДЕ ЗАТЫЛОЧНОГО ПРЕДЛЕЖАНИЯ
  8. БИОМЕХАНИЗМ РОДОВ ЛИЦЕВОМ ПРЕДЛЕЖАНИИ.
  9. Биомеханизм родов при головном предлежании.
  10. Биомеханизм родов при заднем виде затылочного предлежания.
  11. Вальцовые размолочные механизмы
  12. Влияние полимеров и полимерсолевых растворов на увлажнение и прочность неуплотненных глин.

 

Глина, как отмечено, - это совокупность минеральных зерен различных размеров. Наряду с твердыми частицами, она содержит влагу и растворы солей. Глинистые частицы обладают огромной суммарной заряженной поверхностью, а значит, огромной поверхностной электрической энергией.

Суммарную поверхностную энергию всех частиц, слагающих некоторый объем горной породы, а также энергию ионов, находящихся в поровом растворе этого объема, назовем объемной электрической энергией горной породы.

Плотность объемной электрической энергии глинистой породы определяется главным образом дисперсностью и зарядом (полярностью) глинистых частиц, количеством и зарядом ионов порового раствора:

, (9.2)

где qs, - плотность заряда глинистых частиц; S- суммарная площадь глинистых частиц в объеме V; j- потенциал поверхности частицы; jn -потенциал ионного слоя:

, (9.3)

где n - число ионов: qи- заряд ионного слоя; r - расстояние от центров ионов до поверхности глинистых частиц; с - концентрация ионов; NA- число Авогардо; Z - валентность ионов; е - заряд электрона.

Глинистые частицы обладают отрицательным зарядом, обусловленным прежде всего высокой полярностью функциональных групп º SiO- и =SiOH.

По исследованиям академика К.К. Гедройца [6], последние образуются на поверхности частиц почвы (в том числе глины) в результате взаимодействия их с водой. Благодаря водородной связи, катионы Н+ способны вытеснять с поверхности частиц почти все остальные обменные катионы:

 
 
½ ¾SiO-H+ ½ O ½ ¾SiO-H+ ½  

 

 


Под воздействием объемной электрической энергии горные породы насыщаются водой.

Механизм насыщения горной породы водой можно представить следующим образом.

Молекулы воды в результате хаотического их расположения в объеме имеют слабые связи, поэтому подвижны и легко адсорбируются под воздействием поверхностной энергии частиц, слагающих горную породу. Вода в объеме (вследствие хаотичного расположения молекул воды) имеет потенциал, равный нулю. На поверхности частиц горной породы адсорбированный и сориентированный слой воды имеет потенциал:

, (9.4)

где Si - поверхность частиц.

За счет разности потенциалов молекулы (диполи) воды движутся в сторону наибольшего потенциала. Вода - диэлектрик, поэтому с увеличением толщины слоя воды потенциал частицы с адсорбированным слоем быстро убывает. С увеличением толщины слоя воды на частице ее потенциал падает и оказывается меньше потенциала соседней, более удаленной частицы. Между ними создается разность потенциалов, в результате чего наблюдается движение молекул воды от частиц с более толстым гидратным слоем воды к частицам с менее толстым слоем. Такое движение молекул, воды (oт частицы к частице) будет происходить до тех пор, пока на всех частицах породы не наступит равенство потенциалов.

Насыщаться водой за счет объемной электрической анергии способны практически все мелкопористые горные породы (как скальные со сквозной пористостью, так и раздельнозернистые). Однако набухать способны только глинистые породы.

До сих пор среди многих исследователей существует мнение, что глинистые породы набухают за счет осмоса, обусловленного разностью концентраций растворов пор и внешнего раствора (промывочной жидкости).

Осмос - это односторонняя диффузия молекул растворителя (воды) через полупроницаемую перегородку, она обусловлена повышенной концентрацией ионов солей в растворе за перегородкой. В результате диффузии растворителя из объема раствора с малой концентрацией в объем раствора с большей концентрацией может создаваться осмотическое давление. Такая диффузия, очевидно, осуществляется за счет электрической энергии раствора.

При набухании глины создается значительное давление на стенки скважины. Чтобы получить такое давление, должны соблюдаться два условия:

1) большая объемная электрическая энергия порового раствора,

2) весьма прочная полупроницаемая мембрана (перегородка).

Как известно, количество влаги в глинах относительно невелико (исчисляется единицами процентов). Концентрация ионов различных солей в поровом растворе весьма низка (измеряется от долей процента до нескольких процентов), т.е. в целом объемная энергия поровых растворов относительно невелика и создать такое давление не может.

В некоторых раздельнозернистых горных породах объемная энергия может быть значительно выше, но набухания в них не наблюдается.

Полупроницаемые мембраны в природе существуют только в тканях организмов и животных. Для опытов используют обычно искусственные мембраны.

Как показывают опыты различных исследователей, даже самые плотные глинистые корки из тонкодисперсных глин не имеют такой пористости и не являются полупроницаемыми. Да и прочность таких глинистых "мембран" очень мала. Они неспособны выдержать даже незначительное давление.

При отсутствии полупроницаемой перегородки в насыщенных солями горных породах наблюдается двухсторонняя диффузия: внутрь пор молекул воды, из пор в промывочную жидкость ионов солей. В результате двухсторонней диффузии концентрация и давление в порах и скважине выравниваются. Следовательно, глина насыщается водой и набухает не в результате влияния объемной энергии порового раствора, а в результате всасывания воды заряженными глинистыми частицами, обладающими, огромной суммарной поверхностью. Поровый раствор не только не увеличивает, но уменьшает степень насыщения и набухания глины, так как ионы электролитов снижают потенциал и поверхностную энергию (поверхностное натяжение) частиц горной породы. Так, например, влажность натриевой монтморилонитовой глины при концентрации порового раствора соли 0,01 н достигает около 300 %, а при концентрации 3 н около 45 %. Влажность кальциевой монтмориллонитовой глины при концентрации порового раствора соли 0,06 н около 75 %, а при концентрации 3 н немного больше 50 %.

При набухании глины наблюдается осмос (односторонняя диффузия молекул воды под влиянием объемной электрической энергии глины) без наличия полупроницаемой перегородки.

Вода при набухании глинистых пород резко снижает межмолекулярные связи между частицами, что ведет к размягчению (снижению прочности) горной породы, ее пластическим деформациям под влиянием горного давления и обрушению (осыпанию, обвалу) стенок скважин. Пластическими свойствами глины обладают обычно при влажности (W) в среднем в пределах от 15 до 32 %. При меньшей влажности глина представляет мягкую породу, а при большой влажности переходит в текучее состояние (коллоидный раствор или суспензию) [1].

Плотность объемной электрической энергии глины, как показано выше, зависит от суммарной поверхности глинистых частиц. Замерить эту поверхность и ее заряд практически невозможно, поэтому плотность объемной электрической энергии глин лучше определять по максимальному давлению набухания породы.

Действительно, при насыщении глины водой потенциальная поверхностная энергия переходит в механическую - осмотическое давление глины. Осмотическое давление глины, очевидно, определяется теми же законами, что и для растворов:

, (9.5)

Давление набухания (осмотическое давление) можно определить на несложном приборе. Плотность объемной электрической энергии и осмотическое давление, которое может создать глинистая горная порода, можно определить по зависимости ее от удельной поверхности частиц в единице объема Sуд:

, (9.6)

Удельная плотность частиц зависит от формы частиц: для пластинок 2/а = 2 Д; для иголок 4/а=4Д; для изометричной формы 6/а=6Д; где а - размер частиц по минимальному параметру, м; Д- дисперсность, 1/м.

Так, например, удельная поверхность (м23) частиц при их пластинчатой форме, при дисперсности 100 м-1 составляет 200 м23, при дисперсности 1000 м-1 - 2000 м23. при дисперсности 10-6м-1 – 210-6 м23 и т.д.

Следовательно, 1 м3 глины при дисперсности Д = 106 м-1 будет обладать объемной электрической энергией

wо=∆sSуд= 0,073 н/м´2´106м2= 0,1467 МДж;

при дисперсности Д = 107 ¾wo= 1,46 МДж;

при дисперсности Д= 108 ¾ wo= 14,6 МДж;

при дисперсности Д = 109 ¾wo=146 МДж.

Отсюда видно, что в тонкодисперсных глинах ее объемная энергия может достигать довольно значительных величин.

К неустойчивым породам обычно относят пористые и трещиноватые глинистые породы. По гранулометрическому составу глины относят к высокодисперсным системам. Частицы размером до 0,005 мм занимают чаще всего до 30 % объема породы, в том числе коллоидные частицы до 10 %. Такие горные породы имеют пористость, исчисляемую десятками процентов. В большинстве случаев это сквозная пористость, образующая тончайшие капилляры, через которые происходит насыщение породы, водой. Практика показывает, что высота поднятия воды по капиллярам и трещинам в естественных условиях в глинистых породах достигает десятков метров от уровня грунтовых вод.

Капиллярное поднятие воды можно объяснить с позиции теории межмолекулярного взаимодействия воды с поверхностью твердого тела.

Внутренняя поверхность капилляра и трещин так же, как и любые поверхности твердых тел, обладает нескомпенсированным зарядом плотностью qs, под воздействием которого внутри капилляра создается электрическое поле. Под воздействием электрического поля, как отмечено выше, молекулы-диполи воды будут ориентироваться и перемещаться вверх по капилляру за счет взаимодействия молекулярных сил. В связи с ориентированием молекул воды и упорядочением ее структуры прочность межмолекулярных связей возрастает. Образуется устойчивый столбик воды. С увеличением высоты столбика будет расти и его давление. Высота столбика под действием электрического поля капилляра будет расти до тех пор, пока его давление не будет равным прочности структуры воды p=f.

Скорость поднятия воды в капиллярах u можно определить из равенства движущих сил (сил взаимодействия молекул воды с поверхностью капилляра) и сил сопротивления (сил вязкого трения и веса воды).

Удельная движущая сила в капилляре

, (9.7)

удельная сила сопротивления в капилляре

(9.8)

Приравнивая эти две силы и решая уравнение относительно n, получим

(9.9)

где hi - высота подъема в данный момент, т.е. скорость подъема с увеличением высоты подъёма снижается до нуля (при 4s/d=rgh).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)