|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Модель У.Шарпа (рыночная модель)
Ожидаемую доходность актива можно определить также на основе индексных моделей. В которых изменение доходности и цены актива зависит от ряда показателей, характеризующих состояние рынка, или индексов. Простая индексная модель предложена У. Шарпом в середине 60-х годов. В модели Шарпа представлена зависимость между ожидаемой доходностью актива и ожидаемой доходностью рынка. Она предполагается линейной. Уравнение модели имеет следующий вид: где: – ожидаемая доходность актива; – доходность актива в отсутствии воздействия на него рыночных факторов; – коэффициент бета актива; – ожидаемая доходность рыночного портфеля; – независимая случайная переменная (ошибка): она показывает специфический риск актива, который нельзя объяснить действием рыночных сил. Значение ее средней равно нулю. Она имеет постоянную дисперсию; ковариацию с доходностью рынка равную нулю cov (, ); ковариацию с нерыночным компонентом доходности других активов равную нулю. Уравнение модели Шарпа является уравнением регрессии. Если его применить к широко диверсифицированному портфелю, то значения случайных переменных в силу того, что они изменяются как в положительном, так и отрицательном направлении, гасят друг друга, и величина случайной переменной для портфеля в целом стремится к нулю. Поэтому для широко диверсифицированного портфеля специфическим риском можно пренебречь. Тогда модель Шарпа принимает следующий вид: где: – ожидаемая доходность портфеля; – бета портфеля; – доходность портфеля в отсутствии воздействия на него рыночных факторов.
Графически модель Шарпа представлена на рисунке.
График модели Шарпа для различных значениях b: 1) если бета положительна, то график рыночной модели направлен вправо вверх, т. е. при увеличении доходности рынка доходность актива будет повышаться, при понижении — падать. 2) при отрицательном значении беты график направлен вправо вниз, что говорит о противоположном движении доходности рынка и актива. Более крутой наклон графика говорит о высоком значении беты и большем риске актива, менее крутой наклон — о меньшем значении беты и меньшем риске. 3) При b = 1 доходность актива соответствует доходности рынка, за исключением случайной переменной, характеризующей специфический риск. Если построить график модели для самого рыночного портфеля относительно рыночного портфеля, то значение у для него равно нулю, а беты +1.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |