АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задачи для самостоятельного решения. 2. Доказать, что если - собственный вектор некоторой матрицы, то и вектор , где - любое, не равное нулю число

Читайте также:
  1. I СИТУАЦИОННЫЕ ЗАДАЧИ ПО ПРОФИЛЬНЫМ РАЗДЕЛАМ
  2. II. ЦЕЛИ, ЗАДАЧИ И НАПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТИ КЛУБА
  3. III. Задачи ОЦП
  4. IX. Сложные решения
  5. N-мерное векторное пространство действительных чисел. Задачи
  6. V. СИТУАЦИОННЫЕ ЗАДАЧИ
  7. Wiley, 1993), p. 142. Перепечатано с разрешения.
  8. Архитектурные решения
  9. Библиотека задач по теме: Ситуационные задачи для лечебного, педиатрического и медико-профилактического факультетов ( 2011 -2012год)
  10. Библиотека задач по теме: Ситуационные задачи для стоматологического факультета ( 2011 -2012год)
  11. Библиотека задач по теме: Ситуационные задачи для стоматологического факультета ( 2012 -2013 год)
  12. Вашингтонская конференция и ее решения

1. Доказать следствие 4.1.

2. Доказать, что если - собственный вектор некоторой матрицы, то и вектор , где - любое, не равное нулю число, также является собственным вектором, соответствующим тому же собственному значению, что и -

3. Доказать, что система векторов, состоящая из собственных векторов, соответствующих попарно различным собственным значениям некоторой матрицы А, является линейно независимой.

4. Известно следующее свойство определителя: для любых двух квадратных матриц С, В одного порядка -Пользуясь этим свойством, доказать, что собственные значения обратной матрицы равны обратным величинам для собственных значений матрицы А.

5. Доказать: нуль является собственным значением квадратной матрицы А, если и только если А – вырождена.

6. Пусть А – положительная квадратная матрица. Тогда любой ее неотрицательный собственный вектор является положительным и соответствует максимальному собственному значению матрицы А.

7. Пусть А – положительная квадратная матрица. Тогда любые два ее положительных собственных вектора и линейно зависимы, т.е. для некоторого положительного числа .

8. Для данной матрицы А найти все ее собственные значения и собственные векторы, им соответствующие.

а) б) в) г) ; д)

Ответы, указания, решения

2. Указание. Утверждение непосредственно проверяется по определению.

3. Доказательство. Докажем индукцией относительно числа векторов в системе. Для одного вектора утверждение следует из задачи 8 п.1.3. Предположим, что утверждение верно для систем с векторами. Пусть - попарно различные собственные значения матрицы А, - собственные векторы, им соответствующие. Если система векторов - линейно зависима, то нулевой вектор представим в виде ненулевой комбинации этих векторов: - Умножим обе части этого равенства слева на матрицу :

или

.

Так как по индуктивному предположению система векторов линейно независима, то из последнего равенства следует, что все коэффициенты …, равны нулю. Но тогда , ибо все числа , ,…, отличны от нуля. Следовательно, , т.е. . Получено противоречие, поскольку рассмотренная комбинация векторов ненулевая.

4. Доказательство. Поскольку предполагается, что обратная матрица существует, то матрица А не имеет нулевого собственного значения (см. задачу 5 и следствие 2.2). Предположим, что - собственное значение матрицы А. Это равносильно равенству (теорема 4.1). Разделив каждую строку матрицы на , получим равенство . Теперь умножим обе части этого равенства на :

И, опять таки, по теореме 4.1 последнее равенство равносильно тому, что - собственное значение матрицы . Утверждение доказано.

5. Указание: воспользоваться следствием 1.3.

6. Доказательство. Согласно теореме 4.2 и следствию 4.1, существует положительный вектор , такой, что . Пусть теперь - произвольный неотрицательный собственный вектор матрицы А, т.е. для некоторого собственного значения . Если -я координата в равна нулю, то произведение -й строки матрицы А на было бы равно нулю, что невозможно ввиду , и . Поэтому - положительный собственный вектор. Применяя теоремы 1.1 и 1.14, с одной стороны, имеем:

С другой стороны,

Откуда

.

Но ввиду того, что . Поэтому , что и требовалось доказать.

7. Доказательство. Векторы и соответствуют максимальному собственному значению матрицы А (см. задачу 6), т.е. , . Обозначим через положительное число, равное наименьшему из чисел , где , - -е координаты векторов и соответственно. Тогда , причем хотя бы одна координата вектора равна нулю (согласно выбору ). Но

что означает, что - собственный, не являющийся положительным, неотрицательный вектор матрицы А, что \будет противоречить утверждению задачи 6, если только - ненулевой. Поэтому , что и требовалось доказать.

8. Решение. Для определения собственных значений матрицы А составим характеристическое уравнение :

.

Так как определитель треугольной матрицы равен произведению элементов на главной диагонали, то данное уравнение равносильно уравнению , откуда получаем три собственных значения , . Для определения собственных векторов, им соответствующих, необходимо решить три однородные системы линейных уравнений Применим алгоритм метода Гаусса для решения первой из них:

.

Итак, все собственные векторы, соответствующие имеют вид , где - любое число. Аналогично устанавливается, что все собственные векторы, соответствующие , имеют вид , где - любое число. Решим последнюю систему:

Итак, - базисные переменные, - свободная переменная:

.

Поэтому собственные векторы, соответствующие , имеют следующий вид: , - любое число.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)