|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Доказательство равенств и тождеств между множествамиКруги Эйлера можно использовать не только для наглядного изображения различных множеств и результатов операций над множеством в различных теоретико – множественных отношениях, но и для для проверки этих соотношений. Для этого расматривают выражения стоящие в правой и левой частях проверяемых соотношений; отдельно для каждого из них рисуют соответствующие диаграммы Эйлера и проверяют равны или неравны (заштрихованные) области диаграмм, соответствующие обеим частям заданного соотношения. При совпадении этих областей говорят, что данное соотношение справедливо. Пример: А
= - В || - A
|| - А Такой способ является самым простым способом проверки справедлевости заданных соотношений. Другой (прямой) способ доказательства равенств и тождеств, содержащих множества с различными операциями, основывается на доказательстве 2-х положений: I. II. Пример: A I. Пусть x а). Если х b). Если же х В любом случае, как видно, из x
Либо а). x а). Если х b). Если же х Как видно, в любом случае (x Таким образом, показано, что левая часть заданного равенства есть подмножество правой, а его правая часть - есть подмножество левой. По определению это будет означать совпадение множеств, записанных в левой и правой части равенства, т.е. – справедливость тождества А Подобным образом доказываются все равенства и тождества со множествами.
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (1.212 сек.) |