АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Понятие определенного интеграла

Читайте также:
  1. I. Общее понятие модернизма
  2. Административное правонарушение: понятие и признаки, правовая основа№9
  3. Административные взыскания: понятие, перечень и наложения
  4. Акты официального толкования норм права: понятие, признаки, классификация.
  5. Акты применения норм права: понятие, классификация, эффектив-ность действия. Соотношение нормативно-правовых и правоприменительных актов.
  6. Амнистия: понятие и признаки. Помилование: понятие, правовые последствия, отличие от амнистии.
  7. Аппарат государства. Понятие органа аппарата государства.
  8. Билет 31(понятие и виды субъектов правоотношений)
  9. БИОКЛИМАТ. ОСНОВНЫЕ КЛИМАТООБРАЗУЮЩИЕ ФАКТОРЫ. ПОНЯТИЕ ОБ АДАПТАЦИИ. АДАПТАЦИОННЫЕ НАГРУЗКИ
  10. Бухгалтерская отчетность организации: понятие виды и подготовительные работы перед составлением отчетности.
  11. В процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе.
  12. Возникновение и прогнозирование зон АВПД, понятие о D-экспоненте.

Пусть функция определена на отрезке . Разобьем отрезок на частей точками . Выберем на каждом из полученных отрезков произвольную точку .

Интегральной суммой функции на отрезке называется сумма

или

, где .

Наибольшую из длин обозначим через .

 

Определенным интегралом функции на отрезке называется число, равное пределу интегральной суммы и обозначается , т.е.

.

Из условия следует, что .

Пределами интегрирования называются числа и .

Подынтегральной функцией называется функция .

Если функция непрерывна на отрезке , то определенный интеграл существует.

 

Подчеркнем, что определенный и неопределенный интегралы существенно различаются между собой. Если неопределенный интеграл представляет семейство функций, то определенный - есть определенное число.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)