АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Химические свойства. 1. Использование ангидридов как ацилирующих средств

Читайте также:
  1. I. Определение, классификация и свойства эмульсий
  2. III. Химические свойства альдегидов и кетонов
  3. а) наименьшая частица вещества, которая сохраняет его химические свойства.
  4. АЗОТИСТЫЙ АНГИДРИД, СТРОЕНИЕ, ПОЛУЧЕНИЕ, СВОЙСТВА.
  5. АЗОТНЫЙ АНГИДРИД, СВОЙСТВА, СТРОЕНИЕ, СПОСОБЫ ПОЛУЧЕНИЯ.
  6. Алхимические операции.
  7. АММИАК, ЕГО СТРОЕНИЕ, СПОСОБЫ ПОЛУЧЕНИЯ И СВОЙСТВА.
  8. АРСЕНИДЫ, ИХ СВОЙСТВА И СТРОЕНИЕ.
  9. Березовые почки. Полезные свойства
  10. Бериллий, Свойства и параметры бериллия
  11. Биологические свойства субстратов
  12. Биохимические факторы

1. Использование ангидридов как ацилирующих средств. Ангидриды, как и галогенангидриды, обладают большой химической активностью, являются хорошими ацилирующими средствами (часть 1, глава 8.5.2, часть 2, глава 2, 3.3, часть 3, глава 1), вступая в те же реакции, что и галогенангидриды, однако менее энергично:

 

4.2.2.3 АМИДЫ КАРБОНОВЫХ КИСЛОТ – функциональные производные кислот, в которых гидроксил карбоксильной группы замещен на аминогруппу. У амидов в аминогруппе атомы водорода могут быть замещены на углеводородные радикалы. В таком случае их называют N -алкил- или N -ариламидами. Амиды также можно рассматривать как производные аммиака, у которого атом водорода замещен на ацильный остаток.

Амиды представляют собой бесцветные кристаллические вещества или жидкости, растворяющиеся в воде и органических растворителях. Амиды, в молекулах которых имеются связи N–Н, ассоциированы вследствие образования межмолекулярных водородных связей и имеют более высокие температуры кипения.

В амидной группе связи делокализованы благодаря плоскому строению и наличию n,π -сопряженной системы. Это приводит к перерас­пределению электронной плотности: на атоме азота электронная плотность по сравнению с аммиаком и аминами понижается, а на углеродном атоме по сравнению с альдегидами и кетонами повышается. Амиды с низкой молекулярной массой высокополярны и хорошо растворимы в воде. Их часто используют в качестве растворителей.

В молекулах амидов осуществляется значительное взаимодействие между НЭП атома азота и π -электронной системой двойной связи С=О. Образуется сопряженная система связей, изменяются природа связей С–N и С–О и распределение электронной плотности. В результате связь С–N становится короче, а связь С=О несколько длиннее по сравнению с несопряженными соединениями:

 

 

Сравнение основных свойств аминов и амидов. Основность амидов меньше, чем у аммиака и алифатических аминов. В молекуле амида есть два основных центра электрофильной атаки – атомы азота и кислорода, к которым может присоединяться протон. На атоме азота электронная плотность понижена и более выгодной является атака протона по кислороду, при которой сохраняется стабильная сопряженная система связей.

Амиды, содержащие N–H связи, обладают слабокислыми свойствами, но являются более сильными кислотами, чем аммиак. В водном растворе амиды дают нейтральную реакцию. Однако, при взаимодействии с активными металлами амиды, содержащие N–H связи, отщепляют протон, так как при этом образуется стабилизированный делокализацией отрицательного заряда амид-анион.

 

  потеря сопряженной системы   сопряженная система сохраняется

 

У циклических амидов (имидов) кислотность выражена более ярко, так как атом азота находится под влиянием двух карбонильных групп.

По сравнению с аминами амиды карбоновых кислот являются слабыми основаниями ввиду сильного взаимодействия неподеленной электронной пары атома азота с карбонильной группой.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)