|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Квантова теорія парамагнетизму
Згідно квантовій механіці, магнітні моменти можуть займати у просторі лише визначені, дискретні положення відносно магнітного поля. Звісно, ця квантовомеханічна закономірність не знайшла відображення в класичній теорії Ланжевена. При побудові квантовомеханічної теорії парамагнетизму замість інтегрування по куту від 0 до береться сума по дискретних значеннях проекції магнітного моменту атома на напрямок магнітного поля. Енергетичні рівні системи в магнітному полі квантуються і описуються співвідношенням
де
Графічно це буде виглядати наступним чином. Орбитальними моментами ми знехтували, розглядаємо лише спінові. У магнітному полі, направленого вздовж однієї з осей координат, відбувається розщеплення енергетичного рівня. Верхній рівень – із додатньою енергією, нижній із від’ємною. Спіновий магнітний момент електрона чисельно дорівнює магнетону Бора. Верхньому рівню відповідає від’ємне значення магнетону Бора, оскільки Будемо вважати, що за енергіями частинки розподілені за статистикою Больцмана. Якщо маємо лише два енергетичні рівні, то рівноважні кількості електронів на них мають вигляд
З рисунка бачимо, що зменшення температури і збільшення поля переводить більшу частину електронів у нижній енергетичний стан як більш енергетично вигідний. За означенням вектор намагнічування
Остаточно
Зверніть увагу, отриманий вираз для вектора намагнічування відрізняється від отриманого в класичній теорії Ланжевена. Замість функції Ланжевена тут стоїть гіперболічний тангенс. Коли
Отриманий результат в 3 рази більший за отриманий у теорії Ланжевена, але температурна залежність і тут має вигляд закону Кюрі. Врахуємо тепер і орбітальні моменти атома. У магнітному полі атом із кількістю руху, що описується квантовим числом
Замість функції Ланжевена
Формула для вектора намагнічування за відсутності орбітального моменту є частинним випадком для формули Бриллюена при
Оскільки у чисто спіновому намагнічуванню При
Це означає, що на початковій ділянці функція Бриллюена При великих значеннях
Залишаючи квантовомеханічний розгляд парамагнетизму курсу “Атомна фізика”, ще раз наведемо вирази для магнітної сприйнятливості і магнітної проникності
Всі розглянуті нами теорії парамагнетизму дають залежність магнітної проникності від температури
хоч треба зауважити, що в металах це не зовсім так. Досліди показали, що у більшості неферомагнітних металів магнітна сприйнятливість не залежить температури, а її величина складає лише Проблему розв’язав Вольфганг Паулі, показавши, що теорія дає коректні результати, якщо врахувати, що електрони у металі підпорядковані статистиці Фермі-Дірака. Отже, розглянемо так званий парамагнетизм Паулі.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |