|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Метод граничних елементівВ даний час все більшу популярність завойовує метод граничних елементів (МГЕ) [ 13, 18, 19, 62, 122 ]. У ньому вдається виключити інтеграли за обсягом тіла і знизити розмірність задачі на одиницю. Рівняння МГЕ можуть бути отримані з виведеного в роз. 7 зворотного інтегрального урівняння теорії пружності, зокрема, зі співвідношення (7.22). Нехай переміщення
де М (х, у, z) - точка тіла. Функція
У випадку (11.32) зосереджена сила прикладена в точці З аналітичного рішення диференціальних рівнянь рівноваги (7.11) - (7.13) вдається отримати так звані фундаментальні рішення, які відповідають одиничним зосередженим об'ємним силам. Наприклад, для тривимірного ізотропного тіла з модулем зсуву G і коефіцієнтом Пуассона
Де х1=х; х2=у; х3=z;
Рішення (11.34) визначає переміщення uij уздовж осі xi в будь-якій точці тіла М при дії одиничної зосередженої сили в точці
де ni - напрямні косинуси зовнішньої нормалі до поверхні S. Фундаментальні рішення для двовимірних та інших завдань наведені в [13, 18, 19, 62, 122]. Для побудови дискретної схеми МГЕ розглянемо супер-елемент з m граничними вузлами. Будемо вважати, що точка Використовуючи фундаментальні рішення (11.34), (11.36), легко побудувати матриці - функції:
які визначають переміщення і зусилля в будь-якій точці тіла, відповідні заданим об'ємним силам. Наприклад, Після підстановки (11.37), (11.38) в (7.22) і використання властивостей функції Дірака (11.33) будемо мати інтегральне співвідношення:
де Розіб'ємо поверхню S суперелементу на безліч граничних елементів простої форми і розглянемо один з них. Наступний крок полягає в побудові апроксимацій для шуканих векторів
де N {3x3l} - матриця базисних функцій граничного елемента з l вузлами; {u}, {p} - вузлові значення переміщень і поверхневих зусиль. Підстановка цих апроксимацій в (11.39) і обчислення по квадратурних формулах наступних матриць:
призводить до дискретного рівняння:
яке, будучи розглянутим для всіх вузлів супер-елемента, призведе до системи 3 m алгебраїчних рівнянь: H{U) - G{P} ={F) (11.43) щодо векторів вузлових переміщень і зусиль. Для розв'язання цієї системи її потрібно доповнити записаними щодо вузлових змінних граничними умовами в переміщеннях і зусиллях. Для цього зручно розділити вектори {U} і {Р} на частини, які відповідають вузлам кордонів S1 і S2, і врахувати граничні умови:
В результаті отримаємо Зm рівнянь щодо такої ж кількості невідомих {U2} і {Р1}. Очевидним шляхом з (11.44) вдається отримати систему лінійних рівнянь меншого порядку щодо {U2}. Другий варіант полягає у використанні взаємозалежних апроксимацій для
При цьому розв’язна система лінійних рівнянь K{U2}={Q) (11.46) може бути безпосередньо отримана після об'єднання співвідношень
для всіх граничних елементів та врахування кінематичних граничних умов. З рішення отриманої системи можна знайти шукані граничні переміщення. Переміщення у внутрішніх точках супер-елемента можуть бути знайдені з інтегральних співвідношень, аналогічних виразу (11.39), в якому величини з індексом «k» слід розглядати у даній внутрішній точці. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.272 сек.) |