АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Типы автокорреляции

Читайте также:
  1. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  2. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
  3. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений.
  4. Критерий Дарбина-Уотсона обнаружения автокорреляции остатков модели регрессии
  5. Методы Кохрана-Оркутта и Хилдрета-Лу оценки коэффициента автокорреляции
  6. Методы устранения автокорреляции
  7. Обнаружение автокорреляции в остатках
  8. Понятие автокорреляции остатков.
  9. Последствия автокорреляции
  10. Последствия автокорреляции
  11. Почему проявление автокорреляции наиболее типично для временных рядов?
  12. Проверка автокорреляции остатков модели регрессии

Модели с автокоррелированными остатками называются авторегрессионными. Рассматриваем модель парной регрессии,

Авторегрессия 1-го порядка: AR(1)

Авторегрессия 5-го порядка: AR(5)

Автокорреляция скользящих средних 3-го порядка:

 
 


2. Алгоритм проверки адекватности парной регрессионной модели.

Адекватность – возможность получения результата с удовлетворительной точностью. Применительно к построению эконометрических моделей под точностью результата понимается абсолютное значение разности между прогнозом, полученным с помощью модели и реальным значением эндогенной переменной. Модель считается адекватной, если эта разность не превосходит некоторого наперед заданного.

1.Вся имеющаяся в распоряжении выборка наблюдений делится на две неравные части: обучающую и контролирующую. Обучающая выборка включает основную (большую) часть наблюдений. Контролирующая выборка содержит до 5% от общего объема выборки

2.По обучающей выборке оценивается модель (рассчитываются оценки параметров модели и их стандартные ошибки).

3.Задается значение доверительной вероятности Рдов =1-α и определяется критическое значение дроби Стьюдента tкрит

4.Для каждой «точки» из контролирующей выборки по известным значениям экзогенных переменных строится доверительный интервал прогнозного значения эндогенной переменной.

5.Проверяется, попадает ли соответствующее значение эндогенной переменной внутрь полученного.

Пункты 5 и 6 проводятся для каждой точки выборки персонально!

Вывод. Если все значения эндогенных переменных из контрольной выборки накрываются соответствующими доверительными интервалами, то полученная модель с вероятностью Рдов считается адекватной, т.е. пригодной для дальнейшего использования в целях решения экономических задач

3. Алгоритм проверки значимости регрессора в парной регрессионной модели

При проверке качества спецификации парной регрессии наиболее важной является задача установления наличия линейной зависимости между эндогенной переменной и регрессором модели. С этой целью проверяют значимость оценки параметра b.

Алгоритм проверки значимости параметра b выполняется в следующей последовательности:

1) оценка параметров парной регрессии

2) оценка дисперсии возмущений

3) оценка среднего квадратичного отклонения параметра b

4) выбор значения tкр (по заданному уровню значимости альфа и числу степеней свободы (n-2) из таблиц распределения Стьюдента)

5) проверка неравенства при Н0: b=0

Если данное неравенство выполняется, то регрессор признается незначимым, если не выполняется, то данная гипотеза отвергается и регрессор признается значимым, т.е. между эндогенной переменной и регрессором присутствует линейная зависимость.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)