АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Прогнозирование экономических переменных. Проверка адекватности модели

Читайте также:
  1. II. Право на фабричные рисунки и модели (прикладное искусство), на товарные знаки и фирму
  2. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  3. Аддитивная и мульпликативная модели временного ряда
  4. Адекватность трендовой модели
  5. Актуализация опорных знаний. Проверка д/з.
  6. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
  7. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
  8. Алгоритм проверки адекватности парной регрессионной модели.
  9. Алгоритм проверки адекватности парной регрессионной модели.
  10. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
  11. Альтернативные модели потребления.
  12. Анализ временных рядов и прогнозирование

Экономическое прогнозирование (ЭП) - это процесс разработки экономических прогнозов, основанных на научных методах познания экономических явлений и использования всей совокупности методов, средств и способов экономической прогностики.

Рассмотрим две переменные x и y, где y - зависимая переменная (регрессант, эндогенная переменная), x – независимая переменная (регрессор, экзогенная переменная). Функция y = f(Х*) называется функцией регрессии у по Х, если она описывает изменение условного среднего значения результирующей переменной у в зависимости от изменения переменных Х. Соотношение между переменными будем обозначать: y = f (x).

f(X) = E(y| X).

В регрессионной анализе результирующая переменная у может быть рассмотрена как функция, значения которой можно определить, используя значения объясняющих переменных Х = (х(1), х(2),…, х(k)). Математически это можно записать в виде уравнения регрессионной зависимости

у(Х)=f(Х)+ε(X),

E(ε(X))= 0.

Здесь ε(Х) – случайная составляющая. Она отражает влияние на фактор у, не учтенных в модели объясняющих переменных Х, а также включает в себя возможные случайные погрешности измерения объясняемой переменной у. E(ε(X))= 0 при любом фиксированном значении Х.

Сложность экономических процессов и явлений затрудняют проверку их адекватности, истинности получаемых результатов.

Модель именуется адекватной, если прогнозы значений эндогенной переменной согласуются с её наблюденными значениями.

В целом для проверки адекватности модели используются различные тесты, например Коэффициент детерминации, F-тест, Тест Стьюдента, Ошибка аппроксимации, Тест Дарбина- Уотсона и тест Голфелда-Квандта.

Тест Голфелда-Квандта предназначен для проверки предпосылки теоремы Гаусса-Маркова о гомоскедастичности случайных возмущений в уравнениях наблюдений, т.е. о том, что Var(u1)=Var(u2)=….=Var(un)=σ2

Тест Дарбина-Уотсона. Этот тест предназначен для проверки третьей Cov(ui;uj)=0 при i≠j. Часто истинной причиной неадекватности предпосылки оказывается ошибка в выборе уравнения регрессии в спецификации модели. Данный тест является одним из наиболее важных тестов в эконометрике.

Ошибка аппроксимации. Величина отклонений фактических и расчетных значений результативного признака (y-ˆyx) по каждому признаку представляет собой ошибку аппроксимации (ОА). Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, находят среднюю ОА как среднюю арифметическую простую.

или , где n-число наблюдений

F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфакт определяется как

F= (R2/k)/((1-R2)/n-k-1)= ESS/k)/(RSS/n-k-1), где n — число единиц совокупности; m - число параметров при переменных х

Если Fтабл<Fфакт, то Н0 - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл>Fфакт, то гипотеза Н0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Тест Стьюдента. Отношение коэффициента регрессии к его стандартной ошибке дает t-статистику, которая подчиняется статистике Стьюдента при (n-2) степенях свободы. Эта статистика применяется для проверки статистической значимости коэффициента регрессии и для расчета его доверительного интервала.

Фактическое значение t-критерия Стьюдента определяется как

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)