АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости

Читайте также:
  1. II. Документация как элемент метода бухгалтерского учета
  2. II. Достижения и успехи, учитываемые в формировании информационной базы «Золотой фонд студентов»
  3. II. Право на фабричные рисунки и модели (прикладное искусство), на товарные знаки и фирму
  4. III. Методы оценки функции почек
  5. III. Порядок формирования информационной базы «Золотой фонд студентов».
  6. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  7. Абсолютные показатели оценки риска
  8. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  9. Аддитивная и мульпликативная модели временного ряда
  10. Адекватность трендовой модели
  11. Акционерное финансирование. Методы оценки стоимости акций.
  12. Алгебраическое описание метода

С формальной точки зрения, объясняющие переменные в линейной эконометрической модели должны обладать следующими свойствами:

• иметь высокую вариабельность;

• быть сильно коррелированными с объясняемой переменной;

• быть слабо коррелированными между собой;

• быть сильно коррелированными с представляемыми ими другими переменными, не используемыми в качестве объясняющих.

Объясняющие переменные подбираются с помощью статистических мето­дов. Процедура подбора переменных состоит из следующих этапов:

1. На основе накопленных знаний составляется множество так называе­мых потенциальных объясняющих переменных (первичных переменных), в которое включаются все важнейшие величины, влияющие на объясняемую переменную. Такие переменные будем обозначать

2. Собирается статистическая информация о реализациях как объясняе­мой переменной, так и потенциальных объясняющих переменных. Форми­руется вектор у наблюдаемых значений переменной Y и матрица X наблю­даемых значений переменных в виде

3. Исключаются потенциальные объясняющие переменные, характеризу­ющиеся слишком низким уровнем вариабельности.

4. Рассчитываются коэффициенты корреляции между всеми рассматри­ваемыми переменными.

5. Множество потенциальных объясняющих переменных редуцируется с помощью выбранной статистической процедуры.

Речь идет о том, чтобы объясняющие переменные хорошо представляли те переменные, которые не были включены в модель.

Идея метода показателей информационной емкости сводится к выбору таких объясняющих переменных, которые сильно коррелированы с объясня­емой переменной, и одновременно, слабо коррелированы между собой. В ка­честве исходных точек этого метода рассматриваются вектор и матрица R.

Рассматриваются все комбинации потенциальных объясняющих пере­менных, общее количество которых составляет I = 2W-1. Для каждой комбинации потенциальных объясняющих переменных рас­считываются индивидуальные и интегральные показатели информацион­ной емкости.

Индивидуальные показатели информационной емкости в рамках конк­ретной комбинации рассчитываются по формуле

; (l=1,2,…,L; j=1,2,… ), где l – номер переменной, – количество переменных в рассматриваемой комбинации.

Интегральные рассчитываются по формуле

, (l=1,2,…,L). В качестве объясняющих выбирается такая комбинация переменных, которой соответствует максимальное значение интегрального показателя и формационной емкости.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)