АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методы подбора переменных в модели множественной регрессии

Читайте также:
  1. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  2. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  3. II. Право на фабричные рисунки и модели (прикладное искусство), на товарные знаки и фирму
  4. III. Методы оценки функции почек
  5. III. Ценности практической методики. Методы исследования.
  6. IV. Методы коррекции повреждений
  7. VI. Беззондовые методы исследования
  8. VI. Современные методы текстологии
  9. а) Графические методы
  10. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  11. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  12. Аддитивная и мульпликативная модели временного ряда

Множественная регрессия имеет вид

Е[Y/ x1, x2….. xm]=f (x1,x2….xm)

Уравнение множественной регрессии:

Y=f(β, X)+ ε

Где (x1,x2….xm)- вектор объясняющих переменных,

β -вектор параметров (подлежащих определению),

ε – вектор случайных ошибок(отклонений)

Y – зависимая переменная

С формальной точки зрения, объясняющие переменные в линейной эконометрической модели должны обладать следующими свойствами:

• иметь высокую вариабельность;

• быть сильно коррелированными с объясняемой переменной;

• быть слабо коррелированными между собой;

• быть сильно коррелированными с представляемыми ими другими переменными, не используемыми в качестве объясняющих.

Объясняющие переменные подбираются с помощью статистических мето­дов. Процедура подбора переменных состоит из следующих этапов:

1. На основе накопленных знаний составляется множество так называе­мых потенциальных объясняющих переменных (первичных переменных), в которое включаются все важнейшие величины, влияющие на объясняемую переменную. Такие переменные будем обозначать

2. Собирается статистическая информация о реализациях как объясняе­мой переменной, так и потенциальных объясняющих переменных. Форми­руется вектор у наблюдаемых значений переменной Y и матрица X наблю­даемых значений переменных в виде

3. Исключаются потенциальные объясняющие переменные, характеризу­ющиеся слишком низким уровнем вариабельности.

4. Рассчитываются коэффициенты корреляции между всеми рассматри­ваемыми переменными.

5. Множество потенциальных объясняющих переменных редуцируется с помощью выбранной статистической процедуры.

Речь идет о том, чтобы объясняющие переменные хорошо представляли те переменные, которые не были включены в модель.

Идея метода показателей информационной емкости сводится к выбору таких объясняющих переменных, которые сильно коррелированы с объясня­емой переменной, и одновременно, слабо коррелированы между собой. В ка­честве исходных точек этого метода рассматриваются вектор и матрица R.

Рассматриваются все комбинации потенциальных объясняющих пере­менных, общее количество которых составляет I = 2W-1. Для каждой комбинации потенциальных объясняющих переменных рас­считываются индивидуальные и интегральные показатели информацион­ной емкости.

Индивидуальные показатели информационной емкости в рамках конк­ретной комбинации рассчитываются по формуле

; (l=1,2,…,L; j=1,2,… ), где l – номер переменной, – количество переменных в рассматриваемой комбинации.

Интегральные рассчитываются по формуле

, (l=1,2,…,L). В качестве объясняющих выбирается такая комбинация переменных, которой соответствует максимальное значение интегрального показателя и формационной емкости.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)