АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии

Читайте также:
  1. C) кезекті аттестация
  2. II. Право на фабричные рисунки и модели (прикладное искусство), на товарные знаки и фирму
  3. III. ОЦЕНОЧНЫЕ СРЕДСТВА ИТОГОВОЙ ГОСУДАРСТВЕННОЙ АТТЕСТАЦИИ ДЛЯ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ
  4. IХ. Примерный перечень вопросов к итоговой аттестации
  5. T - критерий Стьюдента
  6. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  7. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  8. Аддитивная и мульпликативная модели временного ряда
  9. Адекватность трендовой модели
  10. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
  11. Алгоритм подбора состава тяжелого бетона.
  12. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели, включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Включение в уравнения множественной регрессии того или иного набора факторов связано, прежде всего, с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию должны отвечать следующим требованиям:

· должны быть количественно измеримы;

· не должны быть интеркоррелированы и, тем более, находиться в точной функциональной связи.

Включаемые во множественную регрессию факторы должны объяснять вариацию независимой переменной. Если строится модель с набором р-факторов, то для нее рассчитывается показатель детерминации R2, который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р-факторов. Влияние других, неучтенных в модели факторов, оценивается как 1-R2 с соответствующей остаточной дисперсией S2 .

При дополнительном включении в регрессию фактора (1+р) коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться: R2p+1 >= R2p и S2р+1 =< S2р

Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включаемые в анализ фактор хр+1 не улучшает модель и практически является лишним фактором.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметром регрессии по t –критерию Стьюдента. Т.о. отбор факторов обычно осуществляется в две стадии: на первой – подбирают факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Для оценки значимости коэффициента регрессии его величину сравнивают с его стандартной ошибкой, т.е. определяют фактическое значение t-критерия Стьюдента

где mb – стандартная ошибка параметра ,

где S остаточная дисперсия на одну степень свободы

Данный критерий затем сравнивается с табличным значением при определенном уровне значимости α и числе степеней свободы (n-2).

Если tтабл < tфакт, то H0 отклоняется, т.е. переменная оказывает влияние на модель. Если tтабл > tфакт, то гипотеза Но не откло­няется т.е. переменная не оказывает влияние на модель.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)