|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношенияГенеральная совокупность – это всё множество объектов, обладающих определенным набором признаков (пол, возраст, доход, численность, оборот и т.д.), ограниченная в пространстве и времени, входящих в предмет изучения в соответствии с программой исследования. Выборка (Выборочная совокупность) – часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение обо всей генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на всю генеральную совокупность, выборка должна обладать свойством репрезентативности. В основе статистических выводов проведенного исследования лежит распределение случайной величины X, наблюдаемые же значения(х1, х2, …,хn)называются реализациями случайной величины Х (n — объем выборки). Распределение случайной величины X в генеральной совокупности носит теоретический, идеальный характер, а выборочный аналог является эмпирическим распределением.
Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. В любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание E(x) и дисперсия . По своей природе распределения бывают непрерывными и дискретными. Наиболее известным непрерывным распределением является нормальное. Выборочными аналогами параметров E(x) и для него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания E(x) этого распределения выражает относительную величину (или долю) единиц совокупности, которые обладают изучаемым признаком X (она обозначена буквой p); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 — p). Дисперсия же альтернативного распределения также имеет эмпирический аналог . В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Долей выборки kn называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности: kn = n/N. Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n: w = nn/n. Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки. Связь: E(Xв(с чертой))=Хо(с чертой). Е(Дв)=((n -1)/³)*До Д(Хв(с чертой))=До/n Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |