АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Интерпретация параметров моделей с распределенным лагом и моделей авторегрессии

Читайте также:
  1. I. Расчет параметров железнодорожного транспорта
  2. II. Расчет параметров автомобильного транспорта.
  3. III. Расчет параметров конвейерного транспорта.
  4. Анализ и интерпретация данных, полученных в ходе эксперементальной работы.
  5. Анализ и интерпретация результатов исследования
  6. Аналитика ядра: интерпретация результатов
  7. Вероятностная интерпретация коэффициентов критерия Гурвица.
  8. Взаимозависимость формата команды и основных параметров ЭВМ
  9. Взаимосвязь инфляции и безработицы. Кривая Филлипса и её современная интерпретация. Дилемма экономической политики, заложенная в кривой Филипса
  10. Взаимосвязь режимных параметров и стойкости инструмента.
  11. Вибір моделей макроекономічної політики в Україні.
  12. ВИДЫ НЕЛИН.РЕГРЕССИИ И МЕТОДЫ НАХОЖДЕНИЯ ИХ ПАРАМЕТРОВ

Рассмотрим модель с распределенным лагом в ее общем виде в предложении, что максимальная величина лага конечна: yt=a+b0*x1+b1*xt-1+…+bp*xt-p+ εt.

Эта модель говорит о том, что если в некоторый момент времени t происходит изменение независимой переменной x1 то это изменение будет влиять на значения переменной y в течение l следующих моментов времени. Коэффициент регрессии b0 (краткосрочный мультипликатор) при переменной xt характеризует среднее абсолютное изменение yt при изменении xt на 1ед. своего измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора x. (b0+b1+b2+b3), (b0+b1) - промежуточные мультипликаторы. (b0+b1+b2+b3+b4+bl)=b долгосрочный мультипликатор. Он показываетабсолютное изменение в долгосрочном периоде t + l результата под влиянием изменения на 1 ед. фактора х. Еще две важные характеристики модели множественной регрессии: величина среднего лага и медианного лага. Средний лаг определяется по формуле средней арифметической взвешенной: l = Σj*βj и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании результата на изменение фактора, тогда как высокое его значение говорит о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени. Медианный лаг – это величина лага, для которого Σβj≈0,5.

Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат.

Применение обычного МНК к таким моделям в большинстве случаев затруднительно по следующим причинам: 1)текущие и лаговые значения независимой переменной, как правило, тесно связаны друг с другом. Тем самым оценка параметров модели проводится в условиях высокой мультиколлинеарности факторов. 2) при большой величине лага снижается число наблюдений, по которому строится модель. И увеличивается число е факторных признаков. Это ведет к потере числа степеней свободы в модели. 3) в моделях с распределенным лагом часто возникает проблема автокорреляции остатков. Вышеуказанные обстоятельства приводят к значительной неопределенности относительно оценок параметров модели, снижению их точности и получению неэффективности оценок.

Обратимся к модели авторегрессии. Пусть имеется следующая модель: yt=a+b0*x1+c1*yt-1+ εt. Как и в модели с распределенным лагом, b0 в этой модели характеризует краткосрочное изменение yt под воздействием изменения xt на 1 ед. Однако промежуточные и долгосрочный мультипликаторы в моделях авторегрессии несколько иные. К моменту времени (t+1) результат yt изменился под воздействием изменения изучаемого фактора в момент времени t на b0 ед., а yt+1 под воздействием своего изменения в непосредственно предшествующий момент времени – на c1 ед.. Таким образом, общее абсолютное изменение результата составит b0c1 ед.. Аналогично в момент времени (t+2) абсолютное изменение результата составит b0c12 ед. и т.д.. Следовательно, долгосрочный мультипликатор в модели авторегрессии можно рассчитать как сумму краткосрочного и промежуточных мультипликаторов: b=b0+b0c1+b0c12+b0c13+…

Учитывая, что практически во все модели авторегрессии вводится так называемое условие стабильности, состоящее в том, что коэффициент регрессии при переменной yt-1 по абсолютной величине меньше единицы (|c1|<1), соотношение можно преобразить следующим образом: b=b0*(1+c1+c12+c13+…)= b0/(1- c1), где |c1|<1.

Отметим, что такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие значения.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)