|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Частные уравнения регрессии
На основе линейного уравнения множественной регрессии могут быть найдены частные уравнения регрессии: т.е. уравнения регрессии, которые связывают результативный признак с соответствующими факторами
………………………………………………………,
При подстановке в эти уравнения средних значений соответствующих факторов они принимают вид парных уравнений линейной регрессии: В отличие от парной регрессии частные уравнения регрессии характеризуют изолированное влияние фактора на результат, так как другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:
где
Пример. По ряду регионов множественная регрессия величины импорта на определенный товар При этом средние значения для рассматриваемых признаков составили: Средние по совокупности показатели эластичности:
Для данного примера: т.е. с ростом величины отечественного производства на 1% размер импорта в среднем по совокупности регионов возрастает на 1,053% при неизменных запасах и потреблении семей. с ростом изменения запасов на 1% при неизменном производстве и внутреннем потреблении величина импорта увеличивается в среднем на 0,056%. при неизменном объеме производства и величина запасов с увеличением внутреннего потребления на 1% импорт товара возрастает в среднем по совокупности регионов на 1,987%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат. В рассматриваемом примере наибольшее воздействие на величину импорта оказывает размер внутреннего потребления товара Наряду со средними показателями эластичности в целом по совокупности регионов на основе частных уравнений регрессии могут быть определены частные коэффициенты эластичности для каждого региона. Частные уравнения регрессии в нашем случае составят:
Подставляя в данные уравнения фактические значения по отдельным регионам соответствующих факторов, получим значения моделируемого показателя Частные коэффициенты эластичности для региона несколько отличаются от аналогичных средних показателей по совокупности регионов. Они могут быть использованы при принятии решений относительно развития конкретных регионов.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |