|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Гомоскедастичність і гетероскедастичність
Одним з основних припущень моделі класичної лінійної регресії є припущення про сталість дисперсії кожної випадкової величини εі (гомоскедастичність). Формалізовано це припущення записується у вигляді: Гетероскедастичність – це явище, при якому дисперсія залишків є величиною змінною. Якщо дисперсія залишків величина постійна, то має місце гомоскедастичність. Наприклад, при побудові економетричної моделі, що характеризує залежність між заощадженнями і доходами населення на підставі теоретичної та практичної інформації, можна висунути гіпотезу, що дисперсія залишків за окремими групами населення змінюватиметься і буде пропорційною до середнього доходу цієї групи. Коли розглядати економетричну модель, що характеризує залежність між дивідендами і розміром прибутку або між витратами на харчування і доходом на одного члена сім’ї, витратами на харчування і загальними витратами, то також можна припустити, що дисперсія залишків для окремих груп спостережень змінюватиметься. Якщо існує гетероскедастичність залишків, то це спричинюється до того, що оцінки параметрів моделі 1МНК будуть незміщеними, обгрунтованими, але неефективними. При цьому формулу для стандартної помилки оцінки, строго кажучи, застосувати не можна. припустимо, що дисперсія залишків для моделі пропорційна до величини Х. Тоді доцільно виконати перетворення вихідної інформації, поділивши, наприклад, усі змінні на Х. Модель набере вигляду . У результаті для оцінювання параметрів можна застосувати МНК, здійснивши заміну змінних (тобто здійснивши лінеаризацію). Зауважимо, що параметри а 0 і а 1 помінялися ролями. Вільним членом моделі замість а 0 став параметр а 1. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |