АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Множества и его элементы. Подмножества

Читайте также:
  1. Бинарные соответствия между множествами.
  2. Виды окон Windows и их основные элементы. Операции над окнами. Основные приемы работы в Windows.
  3. Вопрос 25. Морской порт, основные элементы.
  4. Вопрос. Множества и операции над ними
  5. Гальванический элементы. Электролиз
  6. Другие химические элементы.
  7. Духовная жизнь: понятие, сущность, основные элементы.
  8. Использование множества таблиц в одном запросе. Связывание таблиц.оператора SELECT, в предложении FROM допускается указание нескольких таблиц.
  9. Каким термином характеризуется философское учение, признающее существование множества субстанций?
  10. Кредитная политика коммерческого банка, ее элементы.
  11. КУЛЬТУРА КАК ОБЪЕКТ СОЦИАЛЬНОГ ПОЗНАНИЯ. ЕЕ ЭЛЕМЕНТЫ.
  12. Любая система может быть рассмотрена как множество, но не любое множество может быть рассмотрено как система. Важно понимать, что понятие множества отличается от понятия системы

Определение:

Множество – это любая совокупность объектов, которые называются его элементами.

Если х- элемент множества М, то обозначают: х М { х – принадлежит М}, если не принадлежит, то х ∉ М; Множество не содержащее элементов называется пустым и обозначается ∅

Множество, в котором содержатся все элементы, находящиеся в рассмотрении, называется универсальным или универсумом и обозначается –

Ư. Множества, состоящие из одних и тех же элементов, называются равными и обозначаются А = В.

Если любой элемент множества В является элементом множества А, то множество В называется подмножеством множества А (частью множества А) и обозначается В ⊂ А; Отсюда следует, что любое множество является частью самого себя.

По определению пустое множество ∅ является подмножеством любого множества. Т.о. у любого множества А есть два подмножества:

А и ∅.

Они называются несобственными подмножествами множества А. Любое множество В множества А, которое не является несобственными подмножествами А, (т.е. они отличны от А и ∅) и называются собственными подмножествами подмножества А. Множество из одного элемента а обозначается {а}.

Пример: А = {1;2;3} тогда пустое множество ∅ и само множество А является несобственными подмножествами А.

Множества:{1},{2},{3},{1;2},{1;3},{2;3} называются собственными подмножествами множества А. Совокупность всех множеств А называется его булеаном и обозначается – 2А; В А, означает, что В А, В ≠ А. В этом случае говорят, что В строго включено в А или В является собственным подмножеством А;

В случае В ⊆ А, В = А говорят, что В нестрогое включение в А, т.е. В является несобственным подмножеством А.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)