|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Физико-химические основы процессов абсорбции, экстракции и адсорбцииАбсорбцией называют процесс поглощения газов жидкими поглотителями (абсорбентами), в которых газы растворяются. Обратный процесс выделения растворенных газов из растворителя носит название десорбции. В абсорбционных процессах участвуют газовая и жидкая фазы. При абсорбции происходит переход вещества из газовой фазы в жидкую, а при десорбции наоборот — из жидкой в газовую. На практике абсорбции подвергают чаще всего газовые смеси, необходимые компоненты которых могут поглощаться растворителем в заметных количествах. Непоглощаемая часть газовой смеси называется инертным газом. Жидкая фаза состоит из поглотителя и абсорбированного (поглощенного) компонента газовой фазы. Если между молекулами поглотителя и абсорбированного компонента газовой фазы не происходит химического взаимодействия, то это — физическая абсорбция. При наличии химических реакций между молекулами поглотителя и абсорбированного компонента процесс называется хемосорбцией. Существуют различные способы осуществления контакта газовой и жидкой фаз. Как и при ректификации жидких смесей абсорбция осуществляется чаще всего в цилиндрических аппаратах (абсорберах), имеющих слой насадки или определенное количество тарелок. В абсорберах поглотитель движется сверху вниз, а газовая смесь противотоком снизу вверх. Из нижней части абсорбера выводится поглотитель с абсорбированными в нем компонентами газовой смеси. Из верхней части абсорбера отводится остаточная газовая смесь, из которой удалены абсорбированные компоненты. В абсорберах с насадкой осуществляется непрерывный контакт между жидким поглотителем и газовой фазой. В тарельчатых абсорберах такой контакт происходит на тарелках, т. е. ступенчато. При физической абсорбции полное извлечение компонентов из газовой фазы практически невозможно. При хемосорбции абсорбируемый из газа компонент связывается с жидкой фазой в виде нелетучего химического соединения. Если химическая реакция необратима, то возможно полное извлечение компонента из газа. Повышение давления и снижение температуры активизируют процесс абсорбции. Десорбция, наоборот, осуществляется при пониженном давлении и повышенной температуре. Конструктивно десорберы аналогичны абсорберам. Промышленное проведение абсорбции может сочетаться или не сочетаться с десорбцией. Если десорбцию не производят, то абсорбент используется однократно. Сочетание абсорбции с десорбцией позволяет многократно использовать абсорбент и выделять абсорбированный компонент в концентрированном виде практически любой чистоты. Выходящий из абсорбера раствор поглотителя с абсорбированным (растворенным) в нем компонентом газа направляют на десорбцию. Здесь происходит разделение на газовую (бывший поглощенный компонент) и жидкую (абсорбент) фазы. Регенерированный поглотитель вновь возвращается на абсорбцию. При такой схеме (круговой процесс) абсорбент практически не расходуется, если не считать его небольших потерь. Поглотители, в которых абсорбция сопровождается необратимой химической реакцией, регенерируются только химичесгашц, а не физическими способами. Абсорбция, десорбция и ректификация являются процессами одной и той же диффузионной природы. Различие заключается в том, что в случае ректификации взаимодействующие жидкий и паровой потоки обмениваются компонентами, тогда как явления абсорбции и десорбции имеют одностороннюю направленность. Это связано с тем, что абсорбент можно считать практически нелетучим по сравнению с компонентами газовой фазы. На нефтегазовых заводах абсорбция и десорбция углеводородных газовых смесей проводятся, главным образом, в тарельчатых колоннах, расчет и анализ работы которых ведется на базе метода теоретической тарелки. Экстракцией называется процесс извлечения из сырья, находящегося в твердом или жидком (для нефтепереработки) состоянии, отдельных его компонентов путем обработки избирательно действующим растворителем (экстрагентом). При экстракции образуются две несмешивающиеся фазы: сырье—растворитель. Это могут быть твердое тело — жидкость или жидкость—жидкость. Эти фазы должны легко отделяться одна от другой при отстаивании. Скорость перехода компонентов из сырья в растворитель зависит от поверхности контакта фаз так же, как и в процессах ректификации и абсорбции. Очевидно, что вначале сырье и растворитель должны быть хорошо и быстро перемешаны, а потом разделены при их отстаивании. Образовавшиеся две несмешивающиеся фазы носят название экстрактной и рафинатной. В составе экстрактной фазы будут находиться, главным образом, растворитель и хорошо растворимые в нем компоненты сырья. Рафинат будет содержать оставшуюся часть сырья и растворенную в ней небольшую часть растворителя. Например, если отгонкой из разделенных путем отстаивания фаз удалить растворитель, то получим экстракт и рафинат. Экстракт будет в основном состоять из компонентов сырья, извлеченных из него путем экстракции. Экстрагент должен обладать следующими свойствами при экстракции из жидкой фазы: • не растворяться совсем или минимально растворяться в сырье; • образующиеся экстрактная и рафинатная фазы должны значительно отличаться по плотности; • проявлять высокую избирательность и растворяющую способность по отношению к извлекаемому веществу; • заметно отличаться по температуре кипения от извлекаемого вещества, что облегчает их разделение (например, путем ректификации); • быть химически устойчивым или инертным веществом. Экстракцию можно организовать так, что смешивание сырья и растворителя и затем их разделение — отстаивание будет осуществлено в непрерывном режиме многократно, например, в полочных колонных аппаратах. Процесс растворения зависит от химического строения молекул растворителя и растворяемого вещества. Надежных теоретических представлений о природе растворимости нет. На качественном уровне можно только отметить, что вещества, значительно отличающиеся по полярности, плохо растворяются одни в других. Наоборот, равнополярные вещества взаимно хорошо растворяются. На рис. 2.5 показана схема противоточной экстракции с четырьмя ступенями перемешивания экстрагента и сырья. В нашем случае экстрагент имеет большую плотность, чем сырье, и поэтому он подается сверху колонны. Противотоком снизу поднимается сырье. В случае когда растворитель имеет меньшую плотность, чем сырье, места их ввода меняются: сырье подается сверху, а экстрагент — снизу.
Применение колонных аппаратов целесообразно в тех случаях, когда при рабочей температуре процесса потоки имеют невысокую вязкость, что позволяет при помощи встроенных в колонну контактных устройств осуществить надежное перемешивание фаз. При этом разность плотностей рафинатной и экстрактной фаз такая, что в свободном пространстве между контактными устройствами (полками, тарелками и др.) происходит хорошее разделение фаз, что предотвращает их взаимный унос. В противном случае вместо колонных экстракторов применяются экстракторы другого устройства. Чаще всего смешение потоков происходит в специальных горизонтально расположенных смесителях (например, аппаратах с мешалками). Разделение фаз осуществляется в отдельных отстойниках. Смеситель и отстойник образуют одну ступень экстракции. Колонные экстракторы образуют вертикальный, а аппараты с мешалкой и отстойниками — горизонтальный каскад ступеней экстракции. Адсорбцией называют процесс поглощения газов, паров или жидкостей поверхностью твердого тела, которое называется адсорбентом. Адсорбция имеет определенные преимущества перед абсорбционным методом разделения смесей. В отходящем после абсорбции, например, газовом потоке, обязательно будет содержаться некоторое количество извлекаемого компонента. В случае адсорбции его конечная концентрация практически может равняться нулю. На этом основан принцип работы противогаза. Адсорбцию целесообразно применять для разделения газовых смесей, концентрация извлекаемых компонентов в которых невысока, или в случаях, когда необходимо достичь полного выделения веществ из газового потока. При высоких концентрациях извлекаемых компонентов в потоке адсорбент будет быстро насыщаться, что потребует его частой регенерации. В таких случаях лучше сочетать адсорбцию, например, с абсорбцией. Сначала абсорбцией из потока извлекается основная масса вещества, а затем осуществляется его окончательное извлечение путем адсорбции. В качестве адсорбентов, применяемых в нефтепереработке, используют активированные угли, силикагель, алюмогель, синтетические цеолиты. Все эти вещества обладают большой удельной поверхностью, которая определяется отношением поверхности к единице массы адсорбента (г), т. е. имеет размерность Другой характеристикой адсорбентов является их активность (удельная сорбционная емкость). Это количество адсорбированного вещества (г), отнесенное к единице массы (кг) или объема адсорбента (л). Размерность активности — г/кг или г/л. Часто активность выражают также в процентах от веса адсорбента. Различают статическую и динамическую активности. Статическая активность определяется в момент равновесия при данной температуре. Экспериментально она определяется в периодических условиях и говорит о максимальном количестве вещества, адсорбированного единицей массы адсорбента. На рис. 2.6 представлена типичная зависимость от времени количества адсорбируемого вещества, отнесенного к единице массы адсорбента. Динамическая активность характеризуется количеством вещества, поглощенного адсорбентом до появления следов адсорбируемого вещества на выходе из аппарата.
Рассмотрим некоторые характеристики важнейших адсорбентов. Активированные угли получают следующим образом. Вначале вещества растительного (дерево, торф, уголь, скорлупа орехов) и животного (кости) происхождения, а также синтетические смолы, углеродные волокна нагревают без доступа воздуха с целью получения твердого углеродистого или минерального остатка. Затем с целью увеличения удельной поверхности и ее модификации эти твердые вещества обрабатывают при высоких температурах (несколько сотен градусов Цельсия) парами воды, углекислым газом или воздухом (так называемое активирование). Полученные таким образом активированные угли имеют различную удельную поверхность, плотность, зернение и активность. Величина удельной активности может колебаться от 600 до 1700 на 1 г угля. Активированные угли применяются в виде зерен различных размеров (от 1 до 7 мм) или в виде порошка. Зерна имеют форму цилиндриков или таблеток при формовании порошков или неправильную форму, если они получаются дроблением. Активные угли имеют три основных разновидности пор: мик- ро- и макропоры, а также средние между ними — переходные поры (мезопоры). Размеры микропор соизмеримы с размерами адсорбируемых молекул. Удельная размерность микропор выражается сотнями, переходных — десятками, а макропор единицами квадратных метров на грамм. Очевидно, что для адсорбции основное значение имеет микропористая структура активных углей. Основная задача мезопор и макропор — это транспортирование адсорбируемого вещества вглубь частиц адсорбен Активированные угли гидрофобны, поэтому они особенно пригодны для адсорбции неполярных органических соединений. Силикагель получают обезвоживанием геля кремниевой кислоты который образуется при взаимодействии кислот с раствором силиката натрия. Гель после промывки сушат и получают высокопористую твердую массу. В ней равномерно распределены близкие по размерам поры. Силикагель термостоек, но обладает невысокой механической прочностью. Алюмогель — активный оксид алюминия содержащий небольшое (около 1 % мае.) количество оксидов кремния, железа, титана и др. Он обладает высокой активностью к парам воды, превосходя в этом отношении силикагель. Кроме того, алюмо- гель имеет высокую механическую прочность, вытесняя в процессах осушки газов силикагель. Широкое распространение как адсорбенты и подложки для различных катализаторов получили цеолиты — алюмосиликат- ные пористые кристаллы. Цеолиты встречаются в природе, но для технических целей их специально синтезируют. Наиболее часто используют цеолиты типов А и X. Цеолиты получаются в виде очень мелких кристаллов. В гидратированном виде — это сплошные твердые тела. После сушки образуются пористые кристаллы. Пористая структура собственно кристаллов цеолитов неизменна для каждого типа. В состав цеолитов входят ионы кремния, алюминия, кислорода, а также способные к ионному обмену катионы щелочных и щелочноземельных металлов. Поры типов А и X представляют собой сферические полости, которые соединяются друг с другом узкими отверстиями, называемыми окнами. Диаметр окон зависит от природы ионообменного катиона и составляет несколько ангстрем Проникать в полости через окна могут только те молекулы, размеры которых меньше размеров окон. На этом основана резко выраженная избирательность адсорбционных свойств цеолитов, которые называются также молекулярными ситами. Цеолиты особенно энергично адсорбируют электрически несимметричные молекулы (например, воды, углекислого газа и др.). Хорошо сорбируются цеолитами органические вещества, имеющие кратные связи, — ацетилен, этилен. В технике цеолиты типов А и X применяют в виде гранул, таблеток, шариков, состоящих из кристаллических порошков цеолитов и добавок связующих веществ, обычно глин. После термической обработки при температуре 550—600 °С формован ные цеолиты приобретают необходимую механическую прочность. Такие цеолиты применяются для тонкой (тщательной) очистки газов и жидкостей, а также для выделения из смесей газов и жидкостей отдельных компонентов. В промышленности используются адсорбционные аппараты с неподвижным и движущимся слоем адсорбента периодического и непрерывного действия. Адсорберы с неподвижным (стационарным) слоем являются аппаратами периодического действия. Процесс проводится до достижения определенной степени насыщения, чаще всего до появления следов адсорбируемого вещества на выходе из аппарата. Затем в этом же аппарате осуществляется десорбция. Пара аппаратов, работая попеременно на адсорбцию и десорбцию, позволяет осуществлять практически непрерывный процесс. В адсорберах с движущимся слоем перемещение адсорбента происходит под действием силы тяжести или силы трения восходящего газового потока. В первом случае адсорбент непрерывно движется сверху вниз, во втором — пылевидный адсорбент находится во взвешенном (псевдоожиженном) состоянии. В адсорбере с движущимся слоем осуществляется не только непрерывная адсорбция, но и десорбция. Лекция №17 Классификация нефтей Нефти различных месторождений отличаются друг от друга по химическому, фракционному составу и физико-химическим свойствам. В связи с тем что именно свойства нефти определяют направление и условия ее переработки, влияют на качество получаемых нефтепродуктов, целесообразно объединить нефти различного происхождения по определенным признакам, т. е. разработать такую классификацию нефтей, которая отражала бы их химическую природу и определяла возможные направления их переработки. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |