АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Аксиома подвижного покоя в геометрии

Читайте также:
  1. Аксиома 4. Сначала взаимодействие, потом действие
  2. Аксиома выражения в арифметике.
  3. Аксиома выражения в геометрии.
  4. Аксиома выражения в теории вероятностей.
  5. Аксиома выражения в теории множеств.
  6. Аксиома непрерывности в отдельных математических науках.
  7. Аксиома о потенциальной опасности деятельности
  8. Аксиома определенности (закона) бытия в геометрии.
  9. Аксиома определенности (закона) бытия в теории множеств.
  10. Аксиома подвижного покоя в теории вероятностей.
  11. Аксиома подвижного покоя в теории множеств.

 

1. Без труда формулируется та же аксиома для геометрии, поскольку здесь мы находимся в области инобытия числа, и категория подвижного покоя будет дана в своем инобытии. Это значит, что движение здесь мыслится не между отдельными единицами, из которых состоит чистое число, но между моментами инобытийными, т. е. пространственными, и покой будет мыслиться не в недрах самого числа, а среди инобытийно–числовых, пространственных моментов. Как в предыдущей категории различие дало различие не просто актов полагания и не единиц, но точек, а тождество оказалось не тождеством вообще, но пространственным тождеством точек, т. е. линией, плоскостью и телом, так и здесь мы должны оперировать с точками, этим бытием чисто числовых единиц, и должны от одной точки переходить к другой, наблюдая, что получается в результате этого движения и этого покоя.

Пусть мы двигаемся по линии от точки А к точке В. Чтобы показать, что мы именно движемся от А к В и что, придя в 5, мы именно остановились, для этого, очевидно, нужно, чтобы мы имели не просто голые и изолированные точки А и Ву взятые сами по себе, но в каком–то их специфическом взаимоотношении. Нужно, чтобы А уже сама по себе указывала бы на В, α В сама по себе указывала бы на А. Другими словами, нужно, чтобы обеим точкам была свойственна идея порядка, чтобы от А мы шли бы действительно кВи чтобы в таком случае и от В шли бы к А. Легче, однако, это демонстрировать на трех точках, потому что при существовании только двух точек еще есть возможность двигаться в обратную сторону. Когда же мы имеем на одной прямой три точки А, В, С и движемся от А в направлении к С, то тут уже во всяком случае нам придется пройти через точку В. Почему? Потому что точки А, В, С расположены в определенном порядке, связаны определенной последовательностью; и если вообще двигаться в этом направлении, то нельзя не пройти точки В. Таков порядок этой системы. В момент прохождения через В мы как бы на мгновение останавливаемся, а это и значит, что тут действует категория подвижного покоя и что она определяет собою единство направления и порядка.

Можно поэтому в следующем виде выставить нашу аксиому.

Аксиома подвижного покоя в геометрии: геометрическая величина есть совокупность определенным образом взаиморасположенных элементов в их инобытии. Или подробнее: геометрическая величина есть совокупность определенным образом взаиморасположенных элементов, находящихся в состоянии движения по актам своего внешнего полагания и в состоянии покоя, достигаемого этим внешним движением.

2. Из обычных формулировок аксиом сюда относятся т. н. аксиомы порядка. Их я взял бы почти в том виде, как они даны у Гильберта, хотя и в ином порядке — ради большей стройности и последовательности мысли. Именно, на первом месте я бы поставил то, что у Гильберта занимает третье место (II 3):

1. «Из трех точек прямой всегда одна, и только одна, лежит между двумя другими».

За этой аксиомой логически следует та, которая у Гильберта на первом месте (II 1), потому что сначала надо поместить одну точку между двумя другими, а потом уже говорить об отношении ее к этим другим, равно как только после этого следует говорить о продолжении движения за пределы этих двух точек (II 2). Таковы эти аксиомы:

2. «Если А, В и С—точки одной прямой и В лежит между А и С, то В лежит также между С и А».

3. «Если А и С—точки одной прямой, то существует по меньшей мере одна точка В, лежащая между А и С, и по меньшей мере одна точка D такая, что С лежит между А и D».

Это — аксиомы линейные. Необходимо также применение нашей категории и к плоскости. Здесь существует аксиома Паша[27], дающая представление о продолжении и порядке плоскости. Ее можно формулировать так:

4. «Если в плоскости даны три отрезка АВ, ВС и С А, то прямая на этой плоскости, имеющая общую точку с одним каким–нибудь из них, имеет также общую точку с одним из обоих других».

Тут не сразу понятно, что имеется в виду. Имеется же в виду то, что отрезок, соединяющий две точки, находящиеся по одну и ту же сторону от данной прямой, не имеет ни одной общей точки с этой последней, в то время как отрезок, соединяющий две не находящиеся по одну и ту же сторону от данной прямой [точки ], имеет с нею одну общую точку.

Разумеется, должна быть «аксиома порядка» и в отношении пространства (каковой почему–то совсем нет у Гильберта). Ее легко получить по аналогии с аксиомой Паша на плоскости примерно так:

5. «Две плоскости, имеющие одну общую точку, имеют одну общую прямую».

Эта аксиома показывает, как пространство делится плоскостью и как за одной частью пространства следует другая, ибо представление о прямой, общей двум плоскостям, возможно только тогда, когда есть представление о двугранном угле, и притом по крайней мере о двух (если не о четырех) сложных двугранных углах, т. е. представление о разделении пространства и о переходе из одной его части в другую.

Стоит заметить, что предложенная чисто математическая формулировка аксиомы подвижного покоя в геометрии отнюдь не есть единственно возможная. Энриквес наряду с предложениями Гильберта указывает и другие, которые вполне тождественны им. Это, пожалуй, стоит привести.

Одна формула:

«Каждая точка А прямой разлагает прямую на два класса точек (части), которые можно обозначить названиями «правая часть» и «левая часть», таким образом, что

a) каждая отличная от А точка принадлежит одной из обеих частей;

b) если А находится налево (или направо) от какой–нибудь точки В, то каждая точка налево (или направо) от А находится налево (или направо) от В

c) если А находится налево от В, то В находится направо от А».

Другая (относящаяся, как говорит Энриквес, к становящейся фигуре, но, собственно говоря, ни о каком становлении в настоящем диалектическом смысле тут нет и помину) [формула]:

«Точки прямой разбиты на два (естественных) порядка, из которых один противоположен другому таким образом, что при рассмотрении некоторого определенного порядка:

a) если даны две точки А, В прямой, то одна из них, например А, предшествует В ив таком случае В следует за А;

b) если даны три точки А, В, С и А предшествует В и В предшествует С, то А предшествует С;

c) между двумя точками А и В существуют промежуточные точки (предшествующие одной из них и следующие за другой);

d) не существует никакой первой (предшествующей всем) точки, и не существует также никакой последней точки».

Вышеприведенная плоскостная аксиома Паша может быть заменена другой (при условии Эвклидова постулата о параллельных линиях):

«Если две исходящие из одной точки О пары прямых пересекаются некоторой (не параллельной ни одной из четырех прямых) секущей в двух раздельных парах точек, то то же самое имеет место и для любой другой секущей, не проходящей через упомянутую точку О и не параллельной ни одной из четырех прямых».

Чтобы понять эту аксиому и ее своеобразную выразительность, необходимо иметь в виду вот что. Если мы имеем две пары линий, исходящих в упомянутом только что виде из одной точки, и если некая другая линия пересекает обе эти пары, то ясно, что обе эти пары линий находятся в одной и той же плоскости. Ведь, пересекая одну пару линий, наша секущая во всяком случае проходит через наши две точки той плоскости, в которой даны эти две линии, т. е. она всецело лежит на этой плоскости. То же самое и в отношении другой пары линий. Значит, обе пары линий в силу этого лежат на одной плоскости. Но тогда, очевидно, на этой же плоскости может быть проведена и всякая другая линия. И эта другая обязательно пересечет эти же две пары линий и тоже окажется в плоскости, общей обеим этим парам. Следовательно, если это возможно, то с проведением второй секущей мы остаемся в той же плоскости и единственное, что тут происходит, это движение по одной и той же плоскости.

Все различия геометрических формулировок анализируемой аксиомы указывают на то, что в философском отношении нельзя полагаться на чисто геометрические аксиомы. Их приходится заменять более общими формулами, выводимыми на общелогических основаниях.

Геометрические же положения должны быть только примером и приблизительным выражением. Аксиома дает перспективу в науке. И в свете этой перспективы должны появляться сначала более общие, а потом и более частные теоремы.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)