АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Аксиома выражения в геометрии

Читайте также:
  1. Аксиома 4. Сначала взаимодействие, потом действие
  2. Аксиома выражения в арифметике.
  3. Аксиома выражения в теории вероятностей.
  4. Аксиома выражения в теории множеств.
  5. Аксиома непрерывности в отдельных математических науках.
  6. Аксиома о потенциальной опасности деятельности
  7. Аксиома определенности (закона) бытия в геометрии.
  8. Аксиома определенности (закона) бытия в теории множеств.
  9. Аксиома подвижного покоя в геометрии.
  10. Аксиома подвижного покоя в теории вероятностей.
  11. Аксиома подвижного покоя в теории множеств.

 

Выражение геометрического пространства составляет один из самых глубоких и увлекательных отделов философии числа. Попробуем наметить некоторые вехи в этой замечательной области, поскольку это требуется интересами аксиоматики.

1. Пространство, диалектически созревшее до степени выражения, есть пространство, поставленное в соотношение со своим абсолютным инобытием. В общем случае оно — неэвклидовское, «неоднородное» пространство, в котором эвклидовское — только один из частных случаев.

Это неоднородное пространство никак нельзя осилить предыдущими аксиомами. Что нам давали аксиомы едино–раздельности («порядка», «сочетания» и пр.)? Они нам только впервые давали геометрическую фигуру, да и то не столько ее саму, сколько ее отвлеченную категорию. Результат аксиом едино–раздельности, как это формулировано в § 5–8.1, гласил нам только о фигурно–упорядоченной совокупности элементов, и больше ничего. Конечно, и в эвклидовой и во всякой неэвклидовой геометрии построение приводит к тем или иным фигурно–упорядоченным совокупностям. Однако по этой линии невозможно провести различие между эвклидовой и неэвклидовыми геометриями. Точно так же тут ничем не поможет и становление, т. е. принцип непрерывности. Все эти пространства одинаково непрерывны и прерывны, и совершенно не в этом их подлинное различие. Конгруэнтность стоит уже значительно ближе к характеристике разных пространств, но та конгруэнтность, которая выше формулирована у нас в § 64 как результат категории числового ставшего, все равно сюда не годится. Там имелась в виду конгруэнтность внутрифигурная, когда сравнивались две фигуры в пространстве и независимо от свойств того пространства обсуждались с точки зрения конгруэнтности. Здесь же, поскольку ставится вопрос о субстанции самого пространства, нам важна конгруэнтность фигур именно в зависимости от пространства.

Самое большое, что мы получили до сих пор от наших аксиом, это фигура как таковая, с той ее чисто фигурной же измеримостью, которая зависела или от ее внутреннего инобытия, или от ее внешнего, но от такого внешнего, которое положено пока только в виде голого принципа, без всякой реальной развернутости. Ясно, что выведенная нами геометрическая фигура все еще слишком «идеальна», хотя она уже значительно «реальнее» фигуры, о конгруэнтных свойствах которой ничего неизвестно, подобно тому как эта последняя «реальнее» голой категории фигуры. В настоящем же смысле и уже в окончательном смысле «реальной» фигура будет только тогда, когда она вместит в себя и все свое абсолютно–внешнее инобытие. Включивши в себя возможное инобытие, она уже не сможет больше ни в каком смысле изменяться.

Как же включить в геометрическую фигуру ее абсолютно–внешнее инобытие, чтобы она стала выразительней?

2. а) Чтобы решить этот вопрос, мы должны взять какую–нибудь фигуру и рассмотреть ее отношение к ее абсолютно–внешнему инобытию. Возьмем фигуру простейшую— прямую линию, потому что еще более простая «фигура», точка, по своему смыслу абсолютно само–тождественна решительно во всех фигурах и пространствах. Конечно, прямая и без всяких дальнейших добавлений уже содержит в себе свою соотнесенность со своим инобытием. Поскольку в прямой мы находили (§[55]) единство направления, мы тем самым уже, несомненно, ориентировали ее на фоне ее абсолютно–внешнего инобытия. Однако сейчас нам этого мало. Мы хотим как раз эту–то соотнесенность и рассматривать специально, полагая и утверждая ее в виде отдельной диалектической категории. Но для этого мало будет одной прямой. Кроме того, и в указанной соотнесенности нас интересует, собственно говоря, не сама она как таковая, а то, с чем прямая соотнесена, т.е. само пространство. По этой соотнесенности мы должны судить о пространстве.

Чтобы этого достигнуть, мы, очевидно, должны взять по крайней мере две таких прямых. Когда мы берем одну прямую, то ее соотнесенность с прочим пространством если как–нибудь и меняется, то этого заметить невозможно. Другое дело, когда мы имеем две фигуры, конгруэнтные одна другой. Тогда если в этом мы найдем какое–нибудь различие, то оно будет зависеть уже не от внутренних особенностей самой фигуры, но от окружающего ее пространства, а это как раз нам и важно.

[b)] Но что значит две взаимно конгруэнтные прямые? Конгруэнтность есть одинаковая ориентированность фигуры относительно ее внутренно–внешнего инобытия. Две прямые, если мы к ним решаемся применить это понятие, есть не что иное, как две параллельные прямые. Когда две линии параллельны, это значит, что они одинаково ориентированы относительно своего абсолютно–внешнего инобытия, что они взаимно «конгруэнтны» и по своему внутреннему, и по своему внешнему инобытию.

И вот если мы имеем две такие параллельные прямые, а они оказываются при своем продолжении непараллельными, то это значит только то, что данная деформация есть деформация не прямых как прямых, но именно того пространства, в котором они существуют. Если при одинаковой, в принципе, ориентированности прямых они при своем продолжении в пространстве вдруг меняют свою ориентацию, то это значит, что само пространство как–то их деформирует; и по их новому виду мы, следовательно, получаем возможность вполне точно судить о самом пространстве. И особенности этого последнего, выводимые из нового вида фигур, уже не зависят от самих фигур, уж [е ] деформируют в определенном смысле вообще всякие фигуры.

Но если так, то тут мы тоже получаем один из великолепных примеров того, что диалектика называет выражением. Ибо выражение «чего–нибудь» — это как раз и есть смысловая вмещенность этим «чем–нибудь» его внешнего инобытия без реального перехода в это инобытие. Мы видим фигуру, деформированную по сравнению с отвлеченной геометрической фигурой, и по характеру этой деформации судим о том чистом, нефигурном пространстве, которое и обусловило собою эти деформации.

с) Что же оказывается? Оказывается, существует пространство, в котором не только возможна одна параллельная к данной прямой через данную точку, но и такое, в котором этих параллельных может быть сколько угодно, и такое, в котором их не может быть ни одной. В чем же дело?

Какой философский смысл возможности только одной параллельной к данной прямой в данной точке? Из предыдущего вытекает само собой, что если возможна реально только одна параллельная к данной, то это равносильно возможности только одинаковой ориентации прямой относительно прочего пространства. А так как прямая у нас с самого начала берется в чистом виде и без всяких примесей, то, значит, эта одинаковость есть всецело результат самого же прочего пространства, т.е. это пространство как таковое везде одинаково, или, как говорят еще, кривизна его равна нулю. Если к данной прямой через данную точку возможна только одна параллельная, то пространство, в котором все это происходит, есть голое и ровное становление, абсолютно однородное, каким и полагается быть становлению, если оно берется в чистом виде. Рассматривая пространство как выражение, а в выражении основное — это внутренно–внешнее становление, то сначала мы имеем просто становление как таковое, не внося в него решительно никаких диффе–ренций. Это и значит, что к данной прямой через данную точку можно провести только одну параллельную. Это — эвклидовское, параболическое пространство.

Но единице противостоит бесконечность. Что значит, что к данной прямой через данную точку можно провести бесчисленное количество не встречающихся с ней прямых? Это возможно только тогда, когда условия самого пространства обеспечивают проводимой линии ее непересекаемость с данной. Само пространство по своему качеству должно быть таково, чтобы при бесконечном продолжении линии оно толкало ее в сторону от данной прямой и постоянно мешало их встрече. Пространство здесь устроено так, что оно все время как бы расходится в разные стороны. Оно так же бесконечно, как и предыдущее, эвклидовское пространство, но оно в сущности еще более бесконечно, если можно так выразиться, поскольку оно обеспечивает не только уход проводимой линии в бесконечность, но обеспечивает и возвращение ее опять в конечную область. Ведь поэтому–то мы и узнаем о невстрече проводимой линии с данной, что по обе стороны данной точки они не встречаются с нею, как бы мы их ни продолжали.

Следовательно, в этом пространстве мы уже оперируем не с чистым и пустым становлением, но [с] таким, которое вернулось из бесконечности[74]и в котором мы знаем начало и знаем конец, хотя его «середина» и в бесконечности. Это т. н. гиперболическое пространство, или пространство Лобачевского, пространство отрицательной кривизны. Наконец, пространство, в котором невозможна ни одна параллельная к данной прямой через данную точку, устроено так, что оно заставляет все решительно прямые пересекаться уже на конечном расстоянии. Оно насильно гонит каждый две «параллельные» к соприкосновению, так что тут и не может быть никаких параллельных. Тут все линии замкнуты, и пространство обязательно конечно. Это пространство — положительной кривизны, т. н. эллиптическое, сформулированное Риманом.

3. а) Так вот в чем смысл этой старинной проблемы параллельности и всей судьбы знаменитого V постулата Эвклида. Это есть смысл выражения пространства в отличие от чистой фигурности как таковой, которая никак не выражена, а только отвлеченно мыслится. Аксиома параллельности с ее модификациями есть аксиома выражения в геометрии. Закрепим ее в формуле.

Аксиома выражения в геометрии: геометрическое построение основано на тождестве внутренно–внешних направлений своего становления.

Эта формула непонятна только тем, кто не читал или не продумывал предыдущего изложения. Если фигура обсуждается не сама в себе, но в связи с тем пространством, где она осуществлена (в условии положенности его как самостоятельной категории), то это и значит, что построение одинаково принимает здесь во внимание и особенности фигуры как чистой фигуры вне всякого пространства, и особенности пространства как чистого пространства вне всякой фигурности. Это есть тождество внутренно–внешних направлений становления фигуры. Пусть данный угол деформируется в связи с продолжением сторон, из которых он состоит. Это значит, что по данной деформации мы сразу узнаем и о том, что за фигура имеется в виду и что за пространство ее воплощает.

b) Но выше были указаны и модификации этой общей геометрической выразительности. Они определяются тем, в каком виде входит в выражение необходимое для него внешнее становление. Если фигура как таковая бесповоротно утверждена предыдущими аксиомами, то ее выражение есть перекрытие ее новым слоем самостоятельно существующего пространства, и вот оно–то и может входить в разных видах. В геометрии Эвклида, как мы видели, пространство есть чистое и беспримесное становление, лишенное всякой кривизны. Тут кривизна всегда есть кривизна самих фигур, но не чистого бесформенного пространства. В пространстве Лобачевского оно есть не просто становление, но оно само перешло в становление. Это становление становления, давшее нам возможность обозреть становление (в то время как в пространстве Эвклида мы находим только неопределенную длительность). Однако это становление все же остается становлением самого же становления, что и дает возможность, обозревать нам его начала и концы, но не дает возможности обозревать его целиком. Для этого последнего надо, чтобы круговорот становления возвратился к себе так, чтобы мы видели его перед собою полностью. Надо, чтобы становление не только вернулось назад из неопределенной бесконечности, но чтобы отныне весь этот круговорот становления уже не уходил больше в бесконечность и оставался на наших глазах. Таково именно пространство Римана.

Отсюда и специальные аксиомы геометрической выразительности.

Аксиома геометрии Эвклида. Геометрическое построение основано на тождестве внутренно–внешних направлений самого становления, когда это внешнее становление дано в чистом и беспримесном виде.

Аксиома геометрии Лобачевского. То же — когда это внешнее становление перешло в свое собственное становление.

Аксиома геометрии Римана. То же — когда это внешнее становление, возвращаясь к себе, совершает свой круговорот в конечной области.

Можно эти аксиомы формулировать несколько иначе и в ином порядке, имея в виду определения кривых 2–го порядка, данные нами в § [ ]. Но этого мы не станем делать, чтоб не загромождать изложения.

4. Сказанного вполне достаточно, чтобы дать аксиоматическую установку для выразительной области геометрии. Но поскольку подобная теория проводится впервые, краткость всегда приведет к сухости, абстрактности и слишком большой общности. Поэтому попробуем войти глубже в диалектику эвклидова и обоих неэвклидовых пространств, привлекая на помощь также индуктивные данные.

а) Мы изучаем выразительное пространство. Выражение, являя внутреннее вовне, есть тождество внутреннего и внешнего. Внутренним является идеальная геометрическая фигура, т. е. тот ее чисто мысленный и отвлеченный образ, который мы еще никак и ничем не измеряем и о котором не знаем, какую форму он примет в реальном пространстве. Это реальное пространство и есть то внешнее, с чем внутреннее, т. е. идеальная фигура, отождествляется. Как же происходит это отождествление?

Будем покамест говорить о простейшем геометрическом образе — точке. Та точка, с которой мы до сих пор имели дело, вполне «идеальная». Она идеальная до того, что не имеет даже тех измерений, которые свойственны вообще разным фигурам. Может ли эта исключительная идеальность, доходящая до какой–то фантастической абстрактности, оставаться такой до конца? Этого не может быть уже потому, что реальные точки нашего опыта всегда имеют то или иное измерение. Это или чернильное пятнышко, или острие иголки и пр. А ведь геометрия должна осилить ^весь чувственный опыт,> если она хочет быть жизненной. Следовательно, эту фантастическую бесплотность точки надо превратить в живую плоть. И этим занимается выразительная геометрия.

b) Именно, точка, будучи «внутренним», «идеальным», «чистым» и т.д. образом, погружается во «внешнее», «реальное» становление с тем, чтобы отождествиться с ним. Но диалектическое отождествление предполагает отождествляемое неизменным. Поэтому, чтобы идеальная точка воплотилась в реальном становлении, необходимо, чтобы и становление стало идеальным, и идеальное стало становящимся. Чтобы становление стало идеальным, надо ему перестать быть растянутым, грузным, тяжелым инобытием. Оно должно стать легким и невесомым, как сама точка. Это значит, что такая выразительная точка сразу должна находиться во всех моментах своего становления. Становление не должно тут быть процессом, но оно должно быть таким же мгновенным, как и сама точка. С другой стороны, оно не может просто уничтожиться; диалектика требует, чтобы оно в этом новом синтезе и тождестве, в этом новом пространственно–выразительном символе оставалось самим собой. Это значит, что оно здесь абсолютно безразлично в себе и не занято никакой едино–раздельностью, как и полагается чистому меону. А это значил, что точке безразлично, в каком направлении двигаться, когда она переходит в становление; она всегда и при всяком случае остается самой собой, т. е. всегда сама тождественно находит себя в становлении, но уход в становление, т. е. от себя, тождествен возвращению из становления, т. е. к себе. Это значит, наконец, что она движется по замкнутой линии.

Итак, идеальность инобытия заставляет точку сразу быть во всех моментах своего пути одновременно, а инобы–тийность идеального заставляет точку иметь этот путь в виде замкнутой линии (скажем, окружности). Выразительная точка, следовательно, есть окружность, во всех моментах которой точка пребывает одновременно и неизменно.

Этот совершенно понятный язык можно пояснить еще и так. Идеальное — вневременно и внепроцессуально. Но оно может отождествляться с реальным. В таком случае оно охватывает все реальное, двигаясь по нему с бесконечной скоростью. Когда точка движется по своему пути с бесконечной скоростью, она сразу и одновременно находится во всех без исключения точках своего пути. Это и значит, что она сохранила в реальном свою идеальность. Выразительная точка поэтому тождественна с бесконечно большой окружностью, которая, однако, пройдена вся сразу в одно бесконечно малое мгновение.

c) Но и этого мало. Наша идеальная точка двигалась в определенном направлении, чтобы воплотиться в становление. Скажем для простоты, что это было горизонтальное направление. Но выбор этого направления,•конечно, вполне условен. Становление точки совершается не только в горизонтальном направлении, но и, например, в вертикальном, и притом вполне одновременно с горизонтальным. Так как идеальное внепространственно, то оно не зависит и от направлений в пространстве, т.е. оно одновременно и совершенно в одинаковом смысле воплощается и становится сразу во всех направлениях пространства. Следовательно, наша точка сразу и одновременно описывает в одно мгновение бесконечно большую окружность и вправо, и влево, и вверх, и вниз, и во всех промежуточных направлениях, различие которых исчеза–юще мало. Наша точка есть некий фонтан бытия, бегущий сразу во все направления пространства, которые только можно себе представить. Она сразу пробегает всю бесконечность во всех направлениях и мгновенно возвращается к себе. Ей все равно, куда двигаться. Когда она движется налево, это все равно, что ей двигаться направо. Удаляясь от себя налево, она этим самым приближается к себе справа, и, двигаясь от себя вверх, она тем самым спешит к себе снизу. Такова эта сокровенная мысль круга. Удаляться от себя — значит приближаться к себе, и стремиться к себе — значит уходить от себя. Куда бы мы ни двигались, мы все равно приходим к себе, или, что то же, к иному. Но и самый момент начала движения абсолютно совпадает с моментом конца движения, так что не только безразлично, куда двигаться, но и безразлично, двигаться ли вообще.

В этом образе выразительной точки лучше всего можно проверить неизбежность всех основных диалектических категорий идеального: бытия, инобытия, различия, тождества, движения и покоя. Таково идеальное вообще, выраженное здесь геометрически.

d) Теперь не удивляйтесь, если я скажу, что этот бегло намеченный нами образ выраженной точки и есть не что иное, как пространство Римана.

Когда стараешься вникнуть в эти многочисленные изложения геометрии Римана, поражает одна яркая антитеза— неумолимая строгость всего вывода и чудовищность, с обычной точки зрения, всех получаемых результатов. Чтобы понять философскую сущность пространства Римана, приходится разыскивать его зерно, его душу, его перво–принцип, а это–то и трудно уловить за бесконечными и чудовищными нагромождениями. Сами математики мало этому помогают. Тончайший и глубочайший вопрос о смысловом содержании пространства Римана они почти всегда подменяют вульгарным и матерым вопросом о его «реальности». Еще неизвестно как следует, в чем дело и что это за тайна — эллиптическо–сферическое пространство Римана, а уже решается вопрос, реально ли это пространство. И тут, как всегда, целый букет разнообразных вкусов и капризов. Одним хочется, чтобы оно было; другим хочется, чтобы его не было; третьи — и нашим, и вашим; и т. д. Мы отбрасываем весь этот «кабинет любомудрия» и попробуем вникнуть в самое смысловое содержание пространства Римана и неэвклидовых пространств вообще.

5. а) Для нашего исследования очень малую роль играют аналитические рассуждения. Как ни просто, ясно и прекрасно мероопределение Кэли — Клейна, оно нам почти ничего не дает для философского истолкования неэвклидовых пространств. Этот множитель К в определении расстояния, принимающий разное значение для пространств Эвклида, Лобачевского и Римана и связанный с т. н. кривизной пространства, уже предполагает некую интуицию, которую приходится заимствовать из каких–то других источников. Больше дает нам выяснение отношения указанных трех пространств к пространству проективному. Уже в § [63 ] мы видели, как разные типы геометрии получаются при помощи усложнения проективной геометрии. Виды геометрии, рассматриваемые у нас сейчас, также без особого труда выводимы из проективной геометрии. Но и этот метод все еще недостаточно интуитивен и все еще слишком сложен для того непосредственного ощущения, которое должно лежать в основе всякого философского заключения.

Остается один способ — это попробовать использовать обе основные неэвклидовы геометрии эвклидовски–ми методами. Нельзя ли в «нашем», «обычном» пространстве найти такие формы, которые бы в той или иной форме символизировали собою эти чудовищные (на первый взгляд) нагромождения неэвклидовых пространств? Такие попытки были предприняты крупнейшими математиками, Пуанкаре и Клейном, а в простейшей и наглядной форме это изложено у И. Вельштейна в его «Основаниях геометрии». И в этом — якорь нашего философского спасения. Не будь этой эвклидовской интерпретации неэвклидовых пространств, философская сущность последних была бы недостижима и теперь, через сто лет после открытия неэвклидовой геометрии, как она была неясна и тогда[75].

Для уловления этого изначального символа эллиптического пространства рассмотрим сначала понятие т. н. связки.

b) Формулируем сначала ряд несложных геометрических понятий.

Степенью точки относительно данной окружности называется произведение всей секущей, проходящей (рис. I)[76]через эту точку, на ее внешний отрезок. Это величина постоянная для данной окружности и точки и равняется квадрату касательной к данной окружности из этой точки. В случае, когда эта точка находится внутри окружности, степень равняется квадрату полухорды, перпендикулярной к прямой, соединяющей ее с центром окружности. В первом случае оба отрезка секущей всегда расположены по одну сторону точки (будем называть ее О), во втором случае — по разные стороны. Отсюда в первом случае степень считают положительной, во втором же—отрицательной. Если точка О лежит на окружности, то ясно, что степень ее равна нулю. Точки, обладающие одной и той же степенью относительно нескольких окружностей, расположенных в одной плоскости, лежат на одной прямой, перпендикулярной к их линии центров и называемой радикальной осью данных окружностей. В различных точках этой оси степень точки относительно данных окружностей, конечно, разная. Точка пересечения этих осей называется радикальным центром.

 

Окружности, расположенные в одной плоскости и имеющие общую радикальную ось, образуют пучок окружностей. Эти окружности по числу общих точек образуют три группы[77]пучков: 1) параболический пучок, в котором окружности имеют только одну общую точку (рис. 2), 2) эллиптический, когда (рис. 3) их две и 3) гиперболический, когда их ни одной (рис. 4). В первом случае радикальная ось {а) проходит/ через общую точку, т. е. точку касания всех окружностей, во втором — она внутри окружностей (А1А2) и в третьем — она вне их (а'). Легко доказывается из рис. 4, что линия центров эллиптического пучка есть радикальная ось гиперболического пучка, а радикальная ось эллиптического есть линия центров гиперболического и окружности обоих пучков пересекаются ортогонально.

Совокупность окружностей на плоскости, относительно которых какая–нибудь точка О имеет одну и ту же» степень, называется связкой окружностей. Связки тоже бывают трех типов с теми же названиями, что и у пучков, в зависимости от того, имеет ли общий радикальный центр положительную или отрицательную степень относительно окружностей связки или окружности, проходя через одну и ту же точку плоскости, определяют для нее и одну и ту же нулевую степень. Связку можно определить и иначе. Имея в виду, например, что в гиперболической связке значение степени есть (+р2) и что окружность с центром О и радиусом ρ ортогонально пересекает все окружности связки, можно сказать и так: связка окружностей есть такая совокупность окружностей, которые пересекают данную окружность ортогонально. Поскольку в эллиптической связке общий радикальный центр имеет степень (— р2) относительно всех окружностей связки, диаметральная окружность эллиптической связки относится к самой связке, в то время как в гиперболической она — вне ее. Точки пересечения всех окружностей связки могут быть расположены и на самой диаметральной окружности, как это видно на рис. 5[78].

Наконец, необходимо иметь в виду и пространственные отношения. Пучок окружностей, вращаясь вокруг линии центров, образует пучок сфер, т. е. совокупность сфер, имеющих общую радикальную плоскость. Если же окружности связки вращаются каждая вокруг своего центра, то получается связка сфер, совокупность сфер, имеющих общую радикальную ось. Совокупность же сфер, относительно которых некая точка О имеет одну и ту же степень, называется сетью сфер.

 

В случае связки окружностей каждая прямая, проходящая через точку О, пересекает каждую окружность связки в двух точках, в т. н. паре точек связки. Соответственно и в сферической сети — пара точек сети. Эти точки — взаимообразные, потому что они получаются одна из другой путем аналогичного преобразования.

с) Все эти установки дают нам в руки весьма тонкий инструмент для уловления философской сущности неэвклидовой геометрии. Попробуем представить себе, что в эллиптической связке пара точек в инверсии сети является одной точкой. Другими словами, представим себе, что точки Qx и Q2 (рис. 4) пересечения всех окружностей (и сфер) связки есть одна и та же точка. Представить это, может быть, и не так легко. Но вспомним, что мы говорили выше. Точка на данной ступени диалектического развития геометрии должна мыслиться не абстрактно, но выразительно: она вмещает в себя и свою антитезу, т. е. свой уход в бесконечное инобытие, свою «бесконечно удаленную» точку. Итак, точку мы берем вместе с ее диалектической антитезой.

Но что же тогда мы назовем прямой? Прямая предполагает по крайней мере две точки. Но, взглянувши на рис. 4 и помня сказанное выше о выразительности точки, мы сразу замечаем, что какая–то прямая должна образоваться, уже когда абстрактная точка удалилась в свое бесконечное инобытие, и что если она в этом последнем нашла не что иное, как саму же себя, то это возможно только благодаря замкнутости пути, проходимого ею для этого. Следовательно, прямая в нашей новой геометрии есть не что иное, как окружность. Уйти в инобытие, отрицая себя, и найти в инобытии себя же, отрицая свое отрицание и тем заново утверждая себя, — это значит двигаться по окружности. Да мы и раньше, еще в конструкции отвлеченных фигур (§ [55 ]), нашли, что выразительная линия есть определенным образом замкнутая линия. Итак, будем считать окружности нашей связки за прямые.

Теперь не потребует объяснения, что плоскостью в нашей новой геометрии нужно считать сферу.

Итак, вот у нас новое пространство. В нем точка — это то, что сразу охватывает всю бесконечность в смысле совмещения с данной точкой и той, которая от нее бесконечно удалена (хотя в буквальном смысле о бесконечности может тут идти речь только в отношении предельного случая, когда окружность выпрямляется в прямую; в остальных же случаях о бесконечности можно говорить только символически); прямая—это окружность, и плоскость—сфера, что, конечно, тоже является охватом бесконечности, но только в смысле последующих измерений (с указанным символическим пониманием бесконечности, поскольку Риманово пространство вообще может рассматриваться как конечный символ бесконечного). Все прямые и все плоскости в нашем новом пространстве проходят через эту точку, т. е. все они выходят из нее и в нее возвращаются. Но мы, кроме того, говорим о связке окружностей и сфер. А это значит, что прямые, выходя из этой точки и возвращаясь в нее, заполняют решительно всю плоскость, двигаясь сразу во все стороны, которые только допускает плоскость; и плоскости, выходя из этой точки и возвращаясь в нее, заполняют решительно все пространство, двигаясь во всех направлениях, которые только допускает пространство. Сферическая сеть есть именно символ того нового пространства, которое раньше мы называли пространством Римана; и анализировать этот символ — значит понимать и самое пространство Римана.

d) В самом деле, в этом пространстве имеет полную силу наша аксиома самотождественного различия, т. е. Гильбертовы аксиомы сочетания. Можно и нужно говорить, что через две точки тут всегда проходит прямая, и притом одна, потому что две «точки» здесь есть не что иное, как две пары точек, т. е. четыре точки, а окружность (в нашем случае — прямая) определяется уже только тремя точками. Через три точки тут всегда проходит плоскость, и притом только одна, потому что три точки дают нам целых шесть точек, которых даже слишком много для определения сферы. Однако и аксиомы подвижного покоя (Гильбертовы аксиомы порядка) также в известном смысле здесь соблюдаются (понятие «между» модифицируется на понятие «развитие двух пар точек»). Формально остаются у нас и фигуры, конструированные у нас при помощи аксиом определенности, непрерывности и конгруэнтности. Единственная новость этого пространства заключается в том, что тут нет параллельных прямых, что все прямые суть замкнутые кривые, что все они пересекают друг друга уже на конечном расстоянии.

И эта новая аксиома параллельности накладывает свою неизгладимую печать и на все предыдущие аксиомы, хотя формально, т. е. в той абстрактной, до–выразительной форме, как они были выведены раньше, они и остаются в полной силе.

Сферическая сеть является в полном смысле слова символом пространства Римана, выражающим его структуру в максимально четкой форме. Она содержит в себе все особенности символа вообще, и прежде всего отождествление идеального и реального. Уже самая обыкновенная проективная геометрия, вводящая в свое рассмотрение бесконечно удаленные элементы, но не отличающая их от конечных, снимает различие идеального и реального. Это остается и в геометрии Римана, которая есть, как, правда, и всякая другая геометрия, не больше чем специальный вид проективной геометрии. В идеальном бытие и инобытие абсолютно тождественны, как, правда, и различны. В реальном же это самотождественное различие должно быть пространственно положено. А это значит, что все прямые такого пространства замкнуты. Тайна эллиптического пространства заключается в выразительном вездеприсутствии идеального, в таком тождестве идеально–отвлеченной фигуры и ее пространственного инобытия, где уже не различимо ни идеальное, ни реальное. Вот почему тут нет параллельных, и вот почему кривизна такого пространства положительная. В этом пространстве, куда бы я ни двигался, я, описавши известную замкнутую линию, возвращаюсь опять к той же исходной точке. При этом я могу двигаться вперед или назад, вверх или вниз, результат один и тот же. Наконец, если я совсем не двигаюсь, это не значит, что меня нет в другом месте. Я в это же время нахожусь и в другом месте, и притом — во всяком месте, как равно, впрочем, и двигаюсь по всем местам, достигая одни и проходя другие. Тайна пространства Римана, повторяясь, есть тайна подвижного вездеприсутствия идеальных форм, это пространственный символ идеальных фигур или, лучше, пространство как символ.

е) Этот символ можно несколько видоизменить. Будем мыслить себе не связку окружностей, а просто связку прямых. На этом символе Клейн прекрасно иллюстрирует все свойства эллиптического пространства. Именно, пусть точкой у нас будет вся прямая связки. Тогда под новой прямой придется понимать плоскость связки и под новой плоскостью—всю связку. Но что будет в этих случаях отрезком? Если мы поместим плоскость, пересекающую нашу связку, то каждая прямая связки и точка этой плоскости будут связаны взаимно однозначным соответствием. Спрашивается: на основании чего можно будет судить о расстоянии двух точек такой плоскости? Конечно, на основании угла между соответствующими двумя прямыми связки. Следовательно, отрезок на эллиптической плоскости нужно понимать как некий угол и, в частности, равенство отрезков есть равенство углов, а полупрямая, т. е. прямая, неопределенно продолженная в одну сторону, есть не что иное, как прямой угол. Если же мы захотели представить себе угол на эллиптической плоскости, то, поскольку для этого необходимо пересечение двух прямых, а под прямой мы условились понимать плоскость связки, угол этот на плоскости есть, очевидно, двугранный угол. А треугольник — в таком случае — окажется трехгранным углом связки.

На основании такого толкования эллиптической планиметрии мы должны сказать, что все категории геометрии предыдущих аксиом тут понимаются в новом смысле и эта новизна везде обладает одним и тем же методом, методом выразительности. Выразительность же есть прежде всего встреча идеи в инобытии с самой собой. И вот: точка эллиптического пространства уходит в свое инобытие, но все это инобытие, весь путь, пройденный ею, есть точка же; прямая эллиптического пространства уходит в свое инобытие, создавая своим движением плоскость, но эта плоскость есть только та же прямая; отрезок, вращаясь около своей начальной точки, создает угол, но этот угол мы считаем отрезком эллиптической плоскости; угол на эвклидовской плоскости таким же точно путем превращается у нас в двугранный угол, но этот двугранный угол и есть угол эллиптической плоскости и т. д. Везде тут один и тот же метод — выражение идеальной фигуры при помощи инобытийного к ней пространства, если под выражением понимать не внешний безразличный привесок, но самостоятельную смысловую категорию.

Усвоивши себе этот выразительный символ эллиптического пространства, нетрудно уже дедуцировать и прочие особенности последнего, равно как и видеть эллиптически–выразительные модификации всех предыдущих аксиом. «Аксиомы сочетания», очевидно, пополняются указанием на то, что всякие вообще две прямые пересекаются, равно как и плоскости. В «аксиомах расположения» уже нельзя просто утверждать, что если А предшествует В, то В следует за А, так как на замкнутой кривой две точки еще не дают представления о направлении. Только четыре точки, или т. н. разделение двух пар точек, обеспечивают здесь категорию следования и «порядка». Две точки определяют тут не один отрезок, а два (ввиду той же замкнутости прямых). Но так как две прямые продолжают тут пересекаться в одной точке, то получается, что прямая не делит эллиптической плоскости на две раздельные части, а плоскость не делит пространства на две равные части. Две пересекающиеся прямые образуют тут не четыре угла, как у Эвклида, а только два, и два смежных угла, равно как и полный угол, одинаково равняются двум прямым углам. Легко доказывается и существование в эллиптической плоскости треугольника, у которого все углы прямые. Так как угол равен тут отрезку, то длина полупрямойа длина всей прямой = π. Можно сказать, что прямая есть частный случай окружности, когда ее радиус равен Сумма углов треугольника всегда меньше π. Этот факт, между прочим, если его истолковать методом связки, есть не что иное, как то, что сумма трех двугранных углов треугольника больше двух прямых двугранных углов. Это обстоятельство так же ясно, как и то, что прохождение через одну точку всех перпендикуляров к одной и той же прямой соответствует прохождению через некоторую прямую всех плоскостей связки, перпендикулярных к одной и той же плоскости. Площадь всей плоскости = 2π и т. д. и т. д.

Если мы обратим внимание на то, что в эвклидовской сферической тригонометрии сферический треугольник есть не что иное, как трехгранный угол с вершиной в центре шара и сторонами, равными дугам больших кругов, то можно будет сказать, что прямолинейная эллиптическая тригонометрия вполне тождественна с эвклидовской сферической тригонометрией. Если наши отвлеченно–идеальные фигуры будут воплощены на поверхности шара, но в то же время будут квалифицироваться не как явления на поверхности, а как явления на плоскости, то мы и получим эллиптическую геометрию. Этим фигурам будет свойственна любая выразительная кривизна, зависящая не от них самих, но от непосредственного отождествления их с чистым и пустым, абсолютно алогичным инобытием–пространством.

Наконец, из основных геометрических свойств анализируемой плоскости я бы указал еще на одно, может быть, самое замечательное, что здесь имеется. Именно, эллиптическая плоскость односторонней. И чтобы это понять, тут тоже необходимо полететь «вверх пятами», но только на этот раз уже в буквальном смысле. Можно ли себе представить, что плоскость не имеет двух сторон, например верхней и нижней? Казалось бы, это есть уже какое–то умопомешательство. А тем не менее это надо себе представить, так как настоящая математика вообще есть ниспровержение «здравого рассудка», хотя людская пошлость сумела и здесь поставить все вверх дном и понять математику именно как апофеоз здравого рассудка. Но что же это такое, односторонняя плоскость, или поверхность? Укажем сначала ее философское место и потом приведем и геометрический образ.

Мы знаем: всякая прямая имеет только одну бесконечно удаленную точку, что указывает на тождество положительного и отрицательного направления в смысле достижения этой точки. Мы знаем также, что в эвклидов–ском пространстве две параллельные встречаются в бесконечно удаленной точке, как бы изгибаясь одна другой навстречу. Но представим себе некую фигуру между этими двумя параллельными. Если верхняя параллельная склоняется книзу[79], а нижняя кверху, то, очевидно, фигура, заключенная между параллельными, перевертывается, прохождение через бесконечно удаленную область сопровождается перевертыванием. То, что в конечной области есть верх, то в бесконечности — низ, а что низ, то — верх. Поверхность, проходящая через бесконечно удаленную область, выворачивается наизнанку, гак что уже нельзя различить, где лицо и где изнанка. Таким образом, односторонность поверхности есть в философском смысле не больше как уход в инобытие, где уходящее отрицает самого себя, но где оно одновременно и находит себя, отождествляется с собою. Одна и та же философская идея заключается и в том, что прямая имеет только одну бесконечно удаленную точку, т. е. что направления тождественны, и в том, что фигура, проходящая через бесконечно удаленную точку, перевертывается, и в том, что эллиптическая плоскость одностороння. Ведь последняя есть символ бесконечности, т. е. она воплощает бесконечные отношения в конечной и, следовательно, выразительной форме. Поэтому то, что у Эвклида осуществляется только при условии предельного процесса, в геометрии Римана происходит уже в конечной области.

Яснее всего односторонняя поверхность представима на поверхности Мёбиуса [рис. 6 ][80]. Если в одной точке этой поверхности мы поместим и заведем часы, то, когда они пройдут всю эту поверхность и вернутся к исходной точке, мы заметим, что их стрелка движется теперь уже в обратную сторону. Если по средней линии поверхности Мёбиуса пройдет река, то мы, двигаясь вдоль одного берега, рано или поздно очутимся на другом берегу, хотя и без всякого переплывания с одного берега на другой по воде. Эти чудеса, творящиеся в эллиптическом пространстве, математически объяснимы слишком элементарно, чтобы можно было удивляться (идея односторонней поверхности), философски же это есть только логически последовательно проведенная идея бесконечности.

 

 

Однородность поверхности вполне ясна и на связке прямых. Если эти прямые образуют конус и его ось мы повернем на 180°, то образующая, которая раньше описывала коническую поверхность в одном направлении, теперь будет описывать ее в обратном, что и есть признак односторонности.

6. В настоящем контексте мы не будем подробно рассматривать виды выразительного пространства и ограничимся лишь краткими замечаниями.

a) Во–первых, пространство Римана может быть только эллиптическим. Когда мыслится, что всякая прямая пересекается с другой прямой не в одной, а в двух точках, мы получаем не эллиптическую Риманову, но сферическую Риманову геометрию. Используя нашу сеть сфер, мы теперь должны пару точек сети принимать не за одну точку, как в эллиптическом пространстве, но за две взаимно сопряженные точки. То же самое мы получим, если в качестве пра–символа сферического пространства возьмем связку лучей (вместо связки полных прямых). Тогда, по аналогии с эллиптическим пространством, точкой будет луч связки, прямой — плоскость связки, плоскостью— вся связка, отрезком — угол между двумя лучами, углом на плоскости — трехгранный угол и т. д. Если же мы из центра связки лучей опишем шаровую поверхность радиусом = 1 и установим взаимно однозначное соответствие между лучами связки и точками поверхности, то полученная геометрия на поверхности шара будет полным пра–символом сферической планиметрии — стоит только под точкой понимать точку обязательно шаровой поверхности, под взаимно сопряженными точками—диаметрально противоположные, под прямой — окружность большого круга, под плоскостью — поверхность шара, под отрезком—дугу большого круга, под углом — угол между окружностями больших кругов и иод треугольником — сферический треугольник. При всем сходстве с эллиптической системой тут и большие различия— вроде, например, того, что сферическая плоскость—двухсторонняя (она тут как бы дважды выворачивается и потому остается в первоначальном виде) или что полный угол составляет тут не два, а четыре прямых и т. д.

Если разница между обеими геометриями Римана есть разница геометрий связки прямых и связки лучей, то для прямой в одной связке мы находим два луча в другой и, следовательно, фигура в одном пространстве соответствует двум симметричным фигурам в другом пространстве, что каждой точке и двум прямым эллиптической плоскости соответствуют две различные, взаимно противоположные точки и две прямые с двумя общими точками сферической плоскости или что, вообще говоря, эллиптическая плоскость двойная[81].

b) Обеим Римановым геометриям противостоит геометрия Лобачевского, «гиперболическая». Ее пра–сим–вол — указанная выше гиперболическая связка окружностей. Тут мы находим бесчисленное количество окружностей и сфер, которые не пересекаются с данной окружностью или сферой. Можно сказать, что непересекающиеся окружности пересекаются здесь в мнимых точках, а две непересекающиеся сферы имеют общую мнимую окружность, которую всякая прямая, проходящая через точку О в этой плоскости, пересекает в двух взаимно обратных мнимых точках. Вместо того чтобы всем прямым пересекаться уже на конечном расстоянии, мы находим тут целых три категории взаимоотношения прямых. Две прямые определяют здесь или пучок сходящихся прямых (это есть и у Римана, и у Эвклида), или пучок параллельных прямых (как у Эвклида), или пучок расходящихся прямых. Последние и есть оригинальность плоскости Лобачевского. Этот пучок есть совокупность прямых, перпендикулярных к общему перпендикуляру двух данных прямых. Расстояние между двумя параллелями беспредельно растет в одном направлении и беспредельно убывает в противоположном. Поэтому происходит непрерывный переход от пересекающихся, сходящихся прямых через параллели к расходящимся. Если у Римана вовсе нет вещественных бесконечно удаленных точек <…> так что они пересекают эту область, но все еще не пересекаются в ней, а пересекаются где–то за ней, мнимо.

Пуанкаре дал замечательное по наглядности и осязательности истолкование пространства Лобачевского в эв–клидовских терминах. Оно сводится тоже к пра–символу гиперболической связки, но формулировано по–своему, ярче и определеннее. Пусть мы имеем некую прямую[82], все точки которой (V1 N1 U…) являются бесконечно удаленными точками. Пусть мы будем считать точкой обязательно точку верхней полуплоскости, а прямой — полуокружность с центром на данной прямой или полупрямую, перпендикулярную к ней (она, как ясно, будет предельным случаем этих полуокружностей). Новой плоскостью мы станем считать только верхнюю полуплоскость, и вообще нижней полуплоскости для нас не существует. Тогда под параллельными прямыми придется считать полуокружности и полупрямые, которые имеют общий конец. На рис. [7 ] полуокружности U V и NN1 не имеющие общих точек, суть непересекающиеся. Полуокружности UPU' и UV с общей точкой на данной линии параллельны. Пересекающимися прямыми здесь окажутся, например, V1PV и UPU1 с точкой пересечения [.&#929;] выше данной линии.

 

 

Вдумаемся в эту интерпретацию Пуанкаре. Мы видим, что пространство устроено здесь также по закону некоторой кривизны, так как мы принуждены толковать прямые в виде полуокружностей. Фиксируя себя в конечной области, мы начинаем замечать, что оба конца прямой, на которой мы поместились, уходят в бесконечность, но что это не та единая бесконечно удаленная точка, до которой доходят оба конца прямой в Эвклидовом пространстве. Это разные точки. Если эвклидов–ская полупрямая, уходя в бесконечность, получает только одну бесконечно удаленную точку, как бы только касается, дотрагивается до бесконечности, в гиперболическом пространстве перед нами открывается в этой бесконечности еще новая бесконечность, т. е. мы тут не просто дотрагиваемся до нее, но входим в ее глубину и, таким образом, охватываем бесконечность самой бесконечности. Сама бесконечность тут положена как таковая, ставши из мнимой (в эллиптическом пространстве) фактической, вещественной. На нашем языке это значит, что параболическое становление перешло тут в гиперболически ставшее. В конечной же области это сказывается бесконечно расходящимися прямыми, тем, что к данной прямой через данную точку возможно бесконечное количество параллельных. Если в пространстве Римана каждая точка, уходя в бесконечность становления, тут же и возвращается к себе, так что мы уже в конечной области созерцали этот диалектический круговорот, то в гиперболическом пространстве точка не только не возвращается к себе, но уходит в реальную, вещественную бесконечность, и не только это, но стремится в этой бесконечности утвердиться и осесть. Тогда пересечение двух прямых, прошедших через бесконечность, может быть только мнимым, т. е. оно попросту отсутствует вещественно и только идеально представляется.

 

Но пожалуй, интерпретация Кэли — Клейна еще более простая [(рис. 8)][83]. Представим себе шар. Точкой пусть будет точка только внутри этого шара, прямой—его хорда и плоскостью—любое круговое сечение шара. Все точки на поверхности шара исключаются. Тогда пересекающимися прямыми окажутся только те, которые имеют общую точку внутри шара. Если иметь в виду прямую А В и точку М, то пересекаться с А В будут все прямые, исходящие из &#924; внутри угла AM В. Все же прямые за пределами этого угла не будут пересекаться с А В (вещественно, а будут пересекаться мнимо за пределами круга). Прямые МА и MB будут отделять все пересекающиеся прямые от не пересекающихся с прямой А В, т. 'е. они будут параллельными в смысле Лобачевского. Мы видим, что непересекающихся, расходящихся прямых в этих условиях может быть сколько угодно, что бесконечно удаленные точки никогда не могут быть достигнуты (так как они исключаются с самого начала), что прямые &#924; А и MB образуют «равные» углы с «перпендикуляром» из &#924; и А В и т. д. Тут выполняются все аксиомы геометрии, за исключением аксиомы об единственной параллельной.

 

с) В данном месте нет надобности давать обоснование эвклидовой геометрии; тем более нет надобности как–нибудь иллюстрировать относящиеся сюда области.

Заметим только ради единства изложения, что пра–сим–волом Эвклидового пространства также может быть связка окружностей и сфер, причем именно параболического типа, т. е. когда все окружности и сферы имеют одну общую точку (см. выше, п. 5b). Пусть прямыми и плоскостями будут окружности и сферы сети, а точка останется в обычном виде. Другими словами, всякая окружность окажется символом бесконечно удаленной прямой, а параллельными прямыми окажутся все окружности, пересекающиеся в данной точке. Легко увидеть, что все до–выразительные аксиомы и Эвклидова аксиома параллельности вполне найдут себе место в так понимаемом пространстве.

d) Наконец, тот же Пуанкаре еще в одной старой работе[84]дал простейшее и яснейшее представление об основных «квадратичных» геометриях, под которыми он понимает геометрии, рассматриваемые с точки зрения основной поверхности второго порядка. Если этой основной поверхностью второго порядка является обыкновенный шар, то эта сферическая геометрия и есть геометрия Римана при условии понимания больших кругов в качестве прямых линий. Геометрию Римана мы получаем и на эллипсоиде. При двуполом гиперболоиде в качестве основной поверхности мы имеем геометрию Лобачевского, а при эллиптическом параболоиде — геометрию Эвклида. Можно поставить вопрос и о геометрии на однополом параболоиде, если отказаться от предрассудков, которые часто мешают геометрам серьезно отнестись к тем или другим пространствам. Пуанкаре говорит, что для геометрии однополого гиперболоида нужно признать, что: 1) расстояние двух точек, лежащих на одной и той же прямой на производящей основной поверхности, равняется нулю; что 2) никаким движением нельзя превратить эллиптические диаметральные сечения в гиперболические (то и другое принимается за прямые); что 3) невозможно совместить прямую с самой собой путем вращения около одной из ее точек (как у Эвклида совмещается сама собой прямая при вращении на 180°).

Словом, сколько существует поверхностей второго порядка, столько можно себе представить и квадратичных геометрий.

7. В заключение, возвращаясь к трем видам выразительной аксиоматики в геометрии, формулированным в п. 3, дадим общую характеристику выразительного пространства.

Выразительное пространство есть такое внешнее пространство, по которому видно внутреннее. Внутренним, или идеальным, пространством является чистая фигурность как таковая, в той форме, как она выведена на основании аксиом едино–раздельности, непрерывности и конгруэнции. Внешним, реальным, инобытийным пространством является абсолютно–внефигурное становление, противостоящее всякой фигуре. Когда рождается выразительное пространство, то тем самым прекращается раздельное бытие обоих абстрактных пространств и возникает их абсолютное тождество как символ. Этот символ есть перво–принцип выразительного пространства.

Пространство как символ, как символическое пространство сначала понимаем непосредственно, как простую положенность, как тезис. Это значит, что идеальная фигурность просто и целиком воплощена на темном поле инобытийно–бесконечного пространства. Но воплотиться идее — значит целиком присутствовать ей везде, мгновенно охватывать всю длительность пространства. Другими словами, идея, уходя вовне, там же вовне и встречает себя, вечно пребывая, таким образом, в нерушимом круговороте себя самой. Это опознание себя в инобытии, эта встреча с самой собою, когда всякая точка сразу двигается от себя самой во всех возможных направлениях и тем самым отовсюду приближается к себе самой, — вот это пространство как символ, как тезис символа, как принцип символа и есть сферическое пространство Римана. Оно бесконечно, но его бесконечность не расплывается до безразличия, а собрана в себе; она есть система выразительной кривизны, обозримая уже на конечных масштабах. Да бесконечность и не нуждается в отсутствии границ. Истинно бесконечное— оформленно, определенно и в этом смысле конечно. Или, выражаясь бессмертными словами Римана в его общеизвестной вступительной лекции о гипотезах в геометрии, оно — безгранично, но не бесконечно.

Но вот, символ переходит в свое инобытие; он отрицает себя. Пространство, в котором каждая точка возвращалась к себе и которое было сконструировано так, что был обеспечен круговорот бытия геометрической идеи в себе и невозможно было этому бытию иметь другие пути для перемещения фигур, — это пространство вдруг бросается в бездну бесконечной тьмы, забывает себя, отчуждается [от] себя, перестает быть собою. Раньше оно было вечным возвратом [к] себе, теперь же оно — антитезис этого возврата, т. е. теперь оно — уход от себя без возврата к себе, не круговорот, а истечение в неведомую мглу. Положительная кривизна сферического пространства распрямляется и превращается в прямизну. Пространство уже не обеспечивает предмет [ы] такого движения, чтобы оно приводило их к самим же себе. Наоборот, пространство сконструировано здесь так, что если вещь уходит от некоторой точки, то она уходит всерьез и уже никогда не вернется к исходному месту. Таково пространство Эвклида.

Но всякая идея, даже уходя в абсолютное инобытие, даже забывая себя, все же остается самой собой. Если бы раз навсегда идея перестала быть самой собой, то она никогда не смогла бы воскреснуть и вновь. Смысл не может перестать быть смыслом, хотя его и можно забыть. Пребывая в инобытии, она есть она, ибо если ее уже нет, го что же тогда и пребывает в инобытии? Если нет того, что в инобытии, то нет и самого инобытия. Однако где же в Эвклидовом пространстве этот возврат смысла к себе, этот идеальный круговорот точки в себе, из отрицания которого родилось и само Эвклидово пространство? Мы утверждаем, что в инобытии идея теряет себя, забывает себя, становится чем–то не в себе и не для себя, но для иного. Что–то иное фиксирует ее, как ее, а она себя не фиксирует, как себя, она себя теряет, как себя. И действительно, точка, уходя в бесконечную точку инобытия, сама вовсе не значит того, что она уходит именно в бесконечность. Сколько бы точка ни двигалась в том или ином направлении, неизвестно, где же именно наступает здесь бесконечность. Как бы ни удлинялась данная прямая в Эвклидовом пространстве и как бы фактически она ни уходила в бесконечность, никакая точка ее никогда не обнаружит того, что она перестала быть конечной точкой oтрезка и превратилась в точку бесконечно удаленную. Вот это и значит, что геометрическая идея бросилась здесь в бесконечность стремглав, вслепую, что она вовсе не знает того, где она находится, что она не может отличить конечного от бесконечного.

Но об этом знает кто–то иной. Именно, оказывается, что на прямой Эвклида существует только одна бесконечно удаленная точка, что на плоскости Эвклида существует только одна бесконечно удаленная прямая, что трехмерное пространство Эвклида достигает только одной бесконечно удаленной плоскости. Что это значит? А это значит, что безразлично, куда двигаться точке по данной прямой, направо или налево. Она все равно придет в одну и ту же бесконечно удаленную точку. Но знает ли об этом сама точка, т. е. несет ли она с собою тог смысл, по которому можно было бы судить, находится ли она в конечной области или в бесконечности? Конечно, нет. Точка знает, что в одном направлении путь положительный, а в другом — отрицательный; для нее существует безусловное различие направлений движения. А того, что она придет в одну и ту же точку независимо от направления движения, — этого она не знает; и это с трудом усваивают даже те, кто учился геометрии. Точно так же она, как сказано, не знает различия конечного и бесконечного, ибо она вознамерилась двигаться по конечной прямой или во всяком случае конечными интервалами, а ни из каких конечных отрезков невозможно никогда получить бесконечную прямую. Итак, в Эвклидовом пространстве точка тоже возвращается к себе из бесконечности, как и в сферическом пространстве Римана, но она не знает ни того, что она возвращается к себе, ни того, что она возвращается к себе из бесконечности (подобно тому как в топологии линия не знает, прямая она или кривая). Идеальная фигурность (точка, прямая и пр.), или, короче, идея, перешла тут в инобытие, как и у Римана, но она, кроме того, забыла себя, погрузилась в инобытие вслепую, без всякой надежды на возвращение к себе. И вот почему к данной прямой через данную точку возможна только одна параллельная; и вот почему две параллельных встречаются одна с другою в одной–единственной вещественной бесконечно удаленной точке. Об этой встрече они ничего не знают, ибо практически они никогда ее достигнуть не могут. Так с полной ясностью рисуется* перед нашими глазами диалекика–параболического пространства: оно есть прямая, непосредственная, в самом буквальном смысле диалектическая антитеза сферического пространства Римана.

Но самозабвение в инобытии не абсолютно. Движение и становление не всегда безразлично и слепо. Очень долго длится становление, и — не получается никакого нового результата. Но наступает момент, одна капля дальнейшего становления вдруг переносит всю систему на новые рельсы, и начинается становление уже совсем новое, в неожиданном и небывалом смысле. Так сферическое пространство, распрямляя все больше и больше свою кривизну, вдруг превращается в пространство параболическое. И так это последнее, продолжая этот процесс все дальше и дальше, вдруг совершает скачок и становится пространством Лобачевского, гиперболическим.

Что же это за процесс и что это за скачок? Когда идеальная фигурность ушла от себя и забыла себя, то что может произойти дальше? Дальше может быть только продолжение этого ухода от себя, ибо диалектический процесс всегда идет только вперед. Но уйти еще дальше от себя—это значит не просто вечно двигаться дальше и дальше, но закрепить самый факт этого вечного движения, осесть и окопаться в инобытии не в смысле простого становления, но в смысле субстанции. А это возможно только тогда, когда в наших руках находится вся бесконечность, когда она пройдена вся целиком, а не просто точка движется по ней в неопределенную даль. Конечно, слепота остается и здесь, потому что и здесь нет никакой встречи точки с [нею же] самой после ее возвращения из бесконечности и встречи обозримой на конечном расстоянии (ибо это только и есть символ как тождество конечного и бесконечного). Но раз пройдена вся бесконечность, то, значит, пройдено и все инобытие; а если пройдено все инобытие, значит, прекращено забвение смысла, значит, покинутый смысл вновь возвращается и вновь начинает мыслиться. Правда, одной мысленности вечной встречи с самим собою мало. Но ничего иного гиперболическое пространство обеспечить не может. Оно гарантирует мнимую встречу точки, уходящей в бесконечность, с самой собой, в то время как в параболическом пространстве хотя эта встреча и была вещественной, но она была вне смысла встречающихся элементов, она была для иного., о ней не заявляли самые встречающиеся элементы.

В гиперболическом же пространстве, как это мы яснейшим образогм видели на толкованиях Пуанкаре и Кэли — Клейна, происходит встреча прямых за пределами бесконечно удаленной области вполне ощутимо и сознательно, хотя и мнимо. Или, выражаясь точнее, она здесь начинает мыслиться как необходимость. Эта встреча есть уже не для иного, не вне себя, но для себя; это встреча, так сказать, в сознании; точка тут начинает вспоминать, что она может и должна сойтись с собою, обойдя всю бесконечность.

Только обозревая всю бесконечность инобытия, можно начинать вспоминать о бытии. Но обозревание обеспечивает только воспоминание, только мнимость. И вот почему в гиперболическом пространстве параллельных прямых к данной прямой через данную точку вне этой последней — бесчисленное количество; вот почему здесь сколько угодно расходящихся прямых, которые нигде и никогда не встречаются вещественно, несмотря на обход всей бесконечности целиком. Но даже по этому же самому данные прямые встречаются мнимо за пределами бесконечно удаленной области. Эти расходящиеся прямые искривляют здесь пространство в обратную сторону по сравнению с пространством сферическим, так как последнее в своем распрямлении перешло стадию параболической прямизны и начало загибаться в другую сторону. Эта кривизна обеспечивает для точки ее встречу с собою в мнимом пространстве, а вещественно она так же лишена этой встречи, как и в параболическом пространстве.

В смысле диалектики выразительного пространства гиперболическое пространство обладает всеми чертами ставшего, если под становлением, или инобытием, понимать параболическое, а под бытием—сферическое. Оно есть факт, наличное бытие бесконечности. Факт не есть сам смысл, но он несет на себе смысл; и этот смысл — мнимый. Сам по себе смысл не есть ни что–нибудь вещественное, ни что–нибудь мнимое, так как эти моменты возникают лишь при переходе чистого смысла в его инобытие. Однако если смысл перешел в инобытие, оброс телом и стал фактом, то прежний чистый смысл оказался мнимым смыслом. Пока не было факта, не было и мнимости. Но раз возник факт, возникла и мнимость. Однако тут залегает диалектическое противоречие. Факт есть субстанция, действительность, вещественность, а его смысл есть только мнимость. Факт сам по себе слеп, а зрячий смысл — невещественный и мнимый. Это противоречие должно быть снято, а оно снимается, как только мы перестанем отличать вообще обе эти сферы. Оно снимается, как мы знаем, в выражении. Следовательно, в этой общей области выразительного пространства мы должны конструировать пространство, которое было бы по преимуществу выразительным, было бы выражением выражения пространства.

Но снять различие слепого факта и мнимого смысла в нашем случае — значит лишить гиперболическое пространство его слепой бесконечности и превратить его мнимые коэффициенты в вещественные. Но тут мы сталкиваемся с эллиптическим пространством Римана. Тут воспоминание стало реальностью; и точка, забывшая себя в бесконечном инобытии, вновь обрела себя и встретилась с собою, но уже не мнимо, а действительно. В эллиптическом пространстве нет того абсолютного <…>, которое мы находили в пространстве сферическом. Тут остается явный след его возврата к себе из инобытия в том, что пространство это двойное, что оно содержит в себе симметричное удвоение в сравнении с пространством сферическим. Но зато эллиптическая плоскость односторонняя т. е. она вообще не ориентирована в пространстве; она не нуждается ни в каком инобытии для своего существования, так как всякое возможное инобытие она уже вместила в себя, пройдя всю его бесконечность насквозь.

Теперь мы можем непосредственно связать геометрию выразительного пространства с теми видами геометрии, которые мы получили раньше в до–выразительной области (§ [55]). Там, после того как были выведены самые категории фигур (§ [63]), мы имели разные типы фигурного пространства в связи с модификациями становления. Самой общей геометрией была топология, потом шли проективная, аффинная и общеметрическая. Теперь мы можем расшифровать эту последнюю. Мы помним, что в диалектической эволюции типов пространства играли основную роль бесконечно удаленные и мнимые элементы. Чтобы от проективного пространства перейти к аффинному, необходимо ввести бесконечно удаленную плоскость (или поверхность), а для перехода от аффинного к метрическому надо было ввести мнимый сферический круг. Поскольку выразительная сфера есть не что иное, как модификация до–выразительной отвлеченной идеальности, постольку теперь для дальнейшего выведения типов пространства мы должны только модифицировать употребление введенного (как говорят) абсолюта (т. е. бесконечно удаленных и мнимых элементов).

А именно, когда абсолют мыслится мнимым, мы получаем, очевидно, пространство Римана: если последнее есть непосредственно обозримый символ как выразительное тождество идеального и реального, то все остальное, т. е. всякая возможная бесконечность, для него просто не существует, так как оно уже включено. Это значит, что абсолютная поверхность здесь мнимая. У Лобачевского, наоборот, этот абсолют вещественный. Абсолютная поверхность здесь—действительная нелинейная поверхность второго порядка, причем для метрики имеют значение только ее внутренние точки. Так оно и должно быть по предыдущему. Раз идея ушла здесь в бесконечность и в ней забыла себя, го вещественной будет теперь сама эта бесконечность, а мнимой станет, наоборот, прежняя конечная встреча. Наконец, у Эвклида мы тоже имеем вещественный абсолют, но он не может тут оставаться в том полном и развитом виде, как у Лобачевского. Именно, абсолютная поверхность вырождается здесь в мнимое коническое сечение, плоскость которого играет роль т. н. конечно–удаленной плоскости; абсолютное же коническое сечение вырождается в мнимую пару точек, причем имеются в виду только те точки, которые не находятся на вещественной прямой, соединяющей абсолютную пару точек, сама же эта прямая и есть то, что обычно называется бесконечно удаленной прямой. Такое вырождение абсолюта вполне понятно: ведь эвклидов–ское пространство есть бесконечность только потенциальная; оно не положено здесь как самостоятельно–субстанциальная бесконечность; и в этом смысле оно есть мнимость, хотя фактически бесконечность здесь все же налична (раз возможно бесконечное деление). Потому и говорится о выродившемся абсолюте.

Следовательно, три основные метрические геометрии— Римана, Лобачевского и Эвклида—есть не больше как та или иная модификация проективной геометрии, вполне закономерно возникающая из определенного функционирования геометрического абсолюта.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.034 сек.)