|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Аксиома ставшего числового бытия в геометрии
1. а) О конгруэнтности в геометрии говорили больше всего, и это только потому, что там она видна грубее и показательнее, а вовсе не потому, что роль ее тут больше по существу. Даже самое понятие конгруэнтности почти не выяснилось геометрами, <…> и общепонятном смысле. Гильберт без дальнейших разъяснений говорит «конгруэнтный или равный», так что остается неизвестным, чем же конгруэнтность отличается от равенства. Невозможно понять, чем конгруэнтность отличается от подобия. Большинство геометров объединяет конгруэнтность с понятием движения. Так, Пеано брал понятия «точки», «отрезка» и «плоской поверхности», присоединял к ним «движение» и отсюда конструировал аксиому конгруэнтности. Другие (Виери) брали «точку» и «движение» и т. д. Это «движение» в данном контексте или непонятно, или, когда становится понятным, оказывается весьма наивным. В самом деле, зачем геометры привлекают эту категорию? По–видимому, тут имеется в виду очень простая вещь: чтобы судить о конгруэнтности, надо две фигуры [сопо]ставить между собою или заставить одну и ту же фигуру передвинуться на другое место с тем, чтобы потом посмотреть, не изменилась ли она в своих очертаниях. Если это представление правильно, то можно только удивляться его наивности. b) Во–первых, вполне абсурдно применять к геометрическим фигурам понятие движения в физическом смысле. Когда мы говорили о покое и движении, то понимали под этим чисто смысловые категории (образец: от единицы мы «движемся» к двойке, от двойки — к тройке, и т. д.). Но говорить о том, что треугольник «движется» по пространству— это значит высказывать нелепость или выбирать слишком грубую манеру выражаться. В этом же смысле можно говорить о движениях по топологическому или проективному пространству. В этом [же] смысле «движение» играет первостепенную роль и в аксиоме параллельности (к которой мы в дальнейшем перейдем), так как, чтобы судить о том, встречаются ли где–нибудь параллельные или нет, надо прежде всего «двигаться» по этим параллельным. Движение в этом смысле играет первостепенную роль везде в числе, начиная с его первых категориальных моментов. Во–вторых, под «движением» геометры имеют в виду здесь вовсе не движение, а, наоборот, если угодно, «покой», так как понятие конгруэнтности есть во всяком случае понятие как [ого ] — то взаимо–соответствия, взаимосоотнесенности, какого–то совпадения, а это все суть виды покоя или, лучше, подвижного покоя. В–третьих, однако, дело тут, конечно, и не в покое. И движение, и покой суть слишком общие категории, применяемые в математике решительно ко всему[65], и не ими можно вскрыть сложную категорию геометрической конгруэнтности. Чтобы ее усвоить, надо присмотреться к ряду простейших геометрических операций. Пусть мы впервые пришли от точки А до точки В. Мы получили некую линию — пусть, например, прямую. Профану покажется, что если речь идет о получении прямой, то одной этой операции «движения» от А до В и достаточно, чтобы получить прямую. На самом же деле это вовсе не так просто. с) Мало линию провести. Надо, после ее проведения, еще раз пробежать по ней глазами, сравнивая ее с окружающим фоном. Если этого становления не произведено, мы не можем поручиться, что наша прямая есть действительно прямая. Чтобы она была, надо, чтобы она отличалась от всего иного. Когда же мы ее проводили, мы действовали пока еще как бы слепо; и зрячими стали мы в отношении прямой только тогда, когда, пробегая по ней еще раз, мы будем исследовать, действительно ли она во всех своих точках в одинаковом смысле отличается от всего иного (от своего фона), т. е. действительно ли она есть замысленная прямая. Но и того еще мало. Надо еще третий раз пробежать глазами по полученной прямой и опять — совершенно с новым смысловым содержанием. Мы отличили нашу прямую от ее фона, но мы должны еще и отождествить ее с самой собою. Мы сравнили ее с иным, но мы также должны сравнить ее с нею же самою. Когда мы ее провели в первый раз, мы еще не знали, что она такая, потому что весь смысл такой прямой был только смыслом первого ее утверждения, гипо–стазирования, первого ее бытийственного положения. Когда мы провели ее во второй раз, мы уже получили возможность сказать, что наша линия а не есть ни b, ни с, ни вообще что–нибудь иное. Когда же мы проходили по нашей линии в третий раз, мы получили впервые возможность сказать, что наша прямая а есть именно прямая а. Для этого надо было, пробежавши от А до В, пробежать еще от В к А и — отождествить оба прохождения. Первый процесс проведения прямой был полаганием ее едино–раздельности, второй—ее становления (непрерывности), третий процесс есть полагание ее конгруэнтности. Тут мы пока утверждаем самое начало конгруэнтности,, а именно, когда отрезок конгруэнтен самому себе, но зато всякая иная конгруэнтность вырастает отсюда уже сама собой. d) Таким образом, сущность конгруэнции заключается не в движении (движение есть и в едино–раздельности, и в непрерывности, и в параллельности), но в самоотождествлении геометрической фигуры в процессе становления, т. е. в ее ставшем. Конечно, становление как–то предполагается уже в самой едино–раздельной структуре. Но оно тут только предполагается (предполагается тут, как и везде, вообще очень многое), а не вбирается в самую эту структуру (так же, как черный костюм предполагает, что есть или возможен белый костюм, но это еще не значит, что данный белый костюм есть в то же время и черный) и тем более не происходит тут самоотождествления в результате становления. Чтобы вобрать становление в саму себя, едино–раздельная структура должна быть внутри перекрыта слоем непрерывности. Это мы как раз и получили, пробежавши по нашей прямой во второй раз с целью соотнесения ее с ее инобытием. Но та ли эта прямая после включения в себя становления, что и прямая до этого включения? Для этого нужно было пробежать по ней в третий раз. И если после такого пробегания мы определили, что это та же самая линия, то значит, мы включили в едино–раздельную структуру прямой не просто становление, не вообще безразличное становление без начала и конца, но как раз то самое становление, которое необходимо, чтобы наша структура стала, не больше и не меньше. А это значит, что наша прямая отождествилась с самой собой в процессе становления, что она — ставшее, что она конгруэнтна с самой собой. 2. Не вносит большой ясности в дело и обычное у многих геометров именование теорем, основанных обычно на категории конгруэнтности, как метрических. Это последнее обозначение настолько часто встречается в геометрической терминологии, что, кажется, тут и выяснять совершенно нечего. Мы, однако, уже много раз сталкивались с тем, что понятное математикам оказывается совсем не понятным с философско–логической точки зрения. Так же требует разъяснения и понятие геометрической метрики. a) С понятием измерения мы уже встретились в § 54, где пробовали конструировать трехмерное и вообще п–мерное пространство, и в § 63.2, где заговорили об «общей метрической геометрии». Уже в этих двух случаях термин «измерение» обладает совершенно различным содержанием. Когда же говорят о метрике в смысле разных пространств, это будет еще третий смысл термина. Необходимо отдавать себе в этой путанице полный отчет. b) У меня нет иного пути к расшифрованию разных значений этого термина и к их взаимному расположению, кроме диалектики. Диалектический же ход мысли предуказан заранее. Но прежде чем произвести здесь диалектическое исследование, необходимо утвердить самое главное: представление об измерении возникает впервые только с проблемой становления. Измерять можно только тогда, когда есть что измерять и чем измерять. Чтобы было что измерять, необходима какая–нибудь структура; а чтобы было чем измерять, необходимо уметь как–нибудь заполнять эту структуру. Структура впервые создается сферой едино–раздельности. Таким образом, теоремы (а тем более аксиомы) едино–раздельности сами по себе, собственно говоря, не нуждаются ни в каком понятии меры, или измерения. Но ведь сфера идеальной едино–раздельности есть сфера идеальная, сфера Эйдоса. Для нас она является также сферой чистого понятия, чистой категориальности. В категориях же может быть представлено вообще все существующее и несуществующее, возможное и невозможное. В категориях же мы говорили и о геометрических фигурах. В сфере Эйдоса мы имеем дело не столько с самими геометрическими фигурами, сколько с их понятиями. В этом смысле мы и нашли возможным дедуцировать геометрические фигуры еще на стадии едино–раздельности, хотя подлинное их место, конечно, только там, где уже имеет [ся] принцип непрерывности (или прерывности). С вхождением в сферу непрерывности мы впервые получаем геометрические фигуры как таковые (а не только их категориальную структуру и не только их эйдос). Об измерении мы заговорили после перехода к сфере становления, т. е. к сфере непрерывности. Но это было уже другое измерение. Если раньше оно только впервые эйдетически конструировало самую фигуру — и было потому измерением впервые появляющихся пространств, — то здесь мы уже не конструируем фигуру из понятий, но впервые созерцаем ее как готовую. Раньше становление у нас было внутри самой фигуры, будучи ее нераскрытым самотождеством, так что «измерять» фигуру и впервые ее конструировать было одно и то же. Теперь же, поскольку фигура уже сконструирована, дальнейший переход ее в становление влечет за собой разделение функций «конструирования» и «измерения», и измерение оказывается операцией внешней в отношении конструирования. Но если так, то в чем же заключается отношение этих двух операций? Если мы от эйдоса фигуры перешли к самой фигуре, то это значит, что теперь у нас не просто эйдос фигуры, но сама фигура и в ней — ее эйдос. Мы смотрим на фигуру и уже в ней видим ее эйдос, отличный от нее самой. Но это значит, что мы при созерцании такой фигуры сравниваем саму фигуру с ее эйдосом, с ее сущностью. Сравнение[66]же — это и есть более общая категория для всех видов измерения. Другими словами, здесь мы эйдос фигуры измеряем самой фигурой (или, если угодно, саму фигуру — ее эйдосом, хотя это последнее утверждение, однако, менее удобно, так как под измерением обычно понимается применение к измеряемому операции сравнения его с дальнейшими, низшими сферами, например размеры конкретной земли измеряются отвлеченными километрами). с) Совсем новое понимание метрической операции [конгруэнтности. Здесь еще новый переход в инобытие, новый даже по сравнению с тем, когда мы переходили от эйдоса фигуры к самой фигуре. Естественно, что застилание фигуры становлением отодвигает теперь измерение еще дальше от конструирования. Если здесь переход в становление был только не чем иным, как гипостазиро–ванием эйдоса фигуры, то теперь, очевидно, введение нового инобытия должно не просто отличать саму фигуру от ее эйдоса, но оно должно установить инобытийные различия уже в самой гипостазированной фигуре. Раньше фигуру мы сравнивали с ее эйдосом, теперь же фигура получила для нас вполне самостоятельное значение; и если мы будем ее с чем–нибудь сравнивать, т. е. чем–нибудь измерять, то уже не с чем–нибудь высшим и более первоначальным, но с чем–нибудь последующим, вторичным или по крайней мере с самой собой. Конгруэнтность и возникает на почве сравнения геометрической фигуры с самой же собой, на почве измерения фигуры ею же самой. Если мы уже полученную фигуру наложили на нее саму и нашли, что она сама с собой совпадает, то это, во–первых, значит, что мы измерили фигуру при помощи нее же самой; и это значит, во–вторых, что данная фигура подчинена принципу конгруэнции. Таким образом, конгруэнтность фигуры гарантирует нам, что идеальная, едино–раздельная ее сущность (эйдос, категория, понятие), гипостазированная в своей полноте (и тем превращенная в конкретно созерцаемый геометрический образ), не может быть как таковая растянута или сужена, что геометрическая фигурность не только есть, существует, но что она всегда и везде адекватна самой себе, что она неизменна в своих очертаниях и ее нельзя никакой силой деформировать или менять. Это и значит, что геометрическая фигура есть тут нечто ставшее, остановившееся, но это значение мы получили только потому, что мы произвели акт сравнения фигуры с нею же самою, что мы измерили ее при помощи ее же самой. d) Есть, наконец, и еще один тип метрической операции. Логически сам собою возникает из всего предыдущего рассуждения принцип сравнения геометрической фигуры с дальнейшим инобытием, принцип сравнения не с нею же самой, а с тем, что ее отрицает, с инобытийным фоном. Если в процессе измерения фигуры ею же самой мы могли убедиться, что она или совпадает, или не совпадает сама с собой, то теперь мы накладываем на нее меры, взятые из того материала, который ей самой как таковой совершенно чужд. Но что же окружает геометрическую фигуру? Окружает пространство. Что же значит внести в фигуру инобытийно–пространственные моменты? Это значит убедиться, можно ли из алогически–ино–бытийного материала пространства построить данную фигуру или нет. Но это значит смотреть уже на самое пространство относительно. Это значит судить о том, каково данное пространство, на основании деформации самой геометрической фигурности. Ясно, что это измерение есть совсем другое, не бывшее раньше, и эта метрика здесь понимается вполне оригинально. Ниже мы увидим, что она связана с разным пониманием аксиомы параллельности. е) Итак, вот максимально философски отчетливое расчленение и в то же время диалектическая конструкция возможных типов метрической операции в геометрии: 1) метрика в смысле модификации аксиомы параллельности (т. е. в смысле пространства Эвклида, Лобачевского и Римана) есть результат измерения геометрической фигуры при помощи ее внешнего инобытия; 2) метрика в смысле аксиом конгруэнтности есть результат измерения геометрической фигуры, когда она сама для себя является внешним инобытием, т. е. измерение фигуры при помощи ее же самой; 3) метрика в смысле аксиом непрерывности есть результат такого измерения геометрической фигуры, когда она сама квалифицируется как нечто внешнее к чему–то более внутреннему (а именно к ее эйдосу), т. е. это оказывается измерением эйдоса фигуры при помощи самой фигуры; и, наконец, метрика в смысле аксиом едино–раздельности есть не что иное, как результат отождествления измерения эйдоса с его первоначальным конструированием. Сначала мы просто конструируем общее понятие фигуры и еще неизвестно, будет ли оно реальным предметом математических созерцаний, построений и обследований, потом мы накладываем на нее внешние меры, и — начинаем видеть, что она существует не только в мысли, но и «реально» (т. е. непрерывно). Потом мы меряем эту реальную фигуру: оказывается, она совпадает сама с собой или не совпадает, т. е. раньше непрерывность касалась ее первого гипостазирования, теперь же касается самой ее структуры. Непрерывность фигуры в смысле ее структуры и есть конгруэнтность. Далее, мы измеряем уже таким образом сформированную структуру тоже внешними мерами[67], т. е. непрерывность теперь начинает касаться не самой структуры, но возможного ее гипостазирования во внешности уже как таковой, не в смысле только эйдоса (что было бы только превращением эйдоса фигуры в самую фигуру, т. е. первым получением самой реальной фигуры), но в смысле гипостазирования самой реальной фигуры, так что здесь непрерывность превращается в «однородность» пространства (и, значит, в «неединородность»). Можно сказать еще и так. Геометрическая метрика основана или на идеально–смысловой внутренно–эйдетической непрерывности (непрерывность эйдоса фигуры), или на реальной внешне–эйдетической (непрерывность самой фигуры, ее факта и непрерывность ее структуры), или на выразительно–инобытийной эманативной непрерывности ([непрерывность] чисто алогического пространства). Метрических операций столько же, сколько основных диалектических моментов фигуры вообще. И после всего этого расчленения предмета вопрос о том, что именно называть геометрической метрикой, является уже второстепенным, и тут возможны разные вкусы. 3. Теперь выясняется отношение конгруэнтности к равенству и к подобию. Если проводить четкую постановку вопроса и здесь, то необходимо произвести расчленение соответственно основному диалектическому ряду. Прежде всего, мы имели (в супра–акте) 1) абсолютную единичность, или тождество, которое в смысловой сфере превратилось в 2) относительное тождество. Когда отождествляемые моменты не суть чисто смысловые, но становящиеся, г. е. когда они стремятся перейти в факт, мы получаем вместо тождества—равенство. Равенство есть тождество осуществляемого, или смысловое тождество в условиях фактически–субстанционального противостояния, в то время как в чистом тождестве это последнее еще не намечено. Если становление останавливается и мы получаем возможность обсуждать уже полученную структуру, то наше общее тождество трех структур, структурное тождество, есть конгруэнция. И наконец, когда структура сама переходит в новое становление, то мы получаем при условии тождества тождество структуры при наличии новых инобытийных ее свойств. Так получаются треугольники, тождественные но структуре, но — различные в смысле абсолютных размеров. Это есть подобие, которое оказывается, таким образом, выразительно–эманативной формой тождества. Итак, существует: 1) абсолютное тождество (единичность), 2) относительное тождество (в эйдосе), 3) становящееся тождество (равенство), 4) ставшее тождество (конгруэнция), 5) выразительное, энергийное, эманативное тождество (подобие). Так выясняется с предельной четкостью сущность и диалектическое место конгруэнции. 4. Теперь мы можем сформулировать и соответствующие геометрические аксиомы. a) Аксиома конгруэнтности, следовательно, должна указывать на постоянное самотождество ставшего. В арифметике, где становление было арифметической операцией, а ставшее было результатом этой операции, аксиома конгруэнтности свелась на учение о самотождестве результата операции в условиях вариирования самого становления, т. е. в условиях перемены формальной структуры самих операций. Это и дало «законы счета». В геометрии мы имеем дело не со счетом, но с построением. Требуется, следовательно, утвердить самотождество результата построения, т. е. самотождество фигуры (точнее, ее структуры, поскольку речь идет о ставшем в условиях изменения формальной структуры самих построений). Имеется фигура, например прямая. Мы ее построили определенным образом, например соединили две разные точки. Переменим структуру этого построения. Сделать это в отношении столь простого геометрического образования, как прямая, можно только путем обратного процесса, соединения не точки А с точкой В, но В с А. Если при этом прямая не изменится, значит, действует аксиома конгруэнтности. Везде тут фигура как ставшее будет тождественна сама себе, как бы мы ни вели себя в сфере становления, в результате которого появилось наше ставшее. Аксиома ставшего числового бытия в геометрии: геометрическое построение имеет своим основанием тождество направлений [своего ] становления. Другими словами, геометрическое построение зависит только от своей чисто пространственной структуры при любом инобытийном воспроизведении ее элементов. b) В свете этой общей аксиомы, полученной чисто диалектическим путем, будет понятным и многое из того, что рассказывается в математической литературе об аксиомах конгруэнтности. Нужно сказать, что математика и здесь не выдерживает ясного принципа, то объединяя конгруэнцию с предыдущими аксиомами, то ее им противопоставляя. Гильберт, например, формулирует аксиому линейной и плоскостной конгруэнтности и не формулирует конгруэнтности для пространства, выводя ее из сочетания линейно–плоскостной конгруэнтности с аксиомами сочетания и порядка, что, конечно, абсолютно] невозможно, так как аксиомы сочетания и порядка играют в пространственной конгруэнтности ровно ту же роль, что в линейной и в плоскостной. Это можно было бы утверждать, если бы пространственная фигура вообще ничего оригинального в себе не содержала бы по сравнению с линией и плоскостью. Если применение конгруэнтности к одним из элементов, построенных на основании аксиом едино–раздельности, требует аксиоматического закрепления, то это закрепление необходимо и ко всем другим из них. Поэтому для начала лучше вообще не говорить об отдельных фигурах, а нужно говорить о фигуре вообще. Самой общей и отвлеченной аксиомой ставшего бытия, выраженной в геометрических терминах, может служить такая. 1. Каждая геометрическая фигура конгруэнтна самой себе. Обыкновенно говорят об отрезке, который равен самому себе, где бы мы его ни откладывали. Но, снижая это суждение до наибольшей внутренней краткости, можно сказать, что каждая геометрическая фигура просто конгруэнтна сама себе, так как для установления конгруэнтности достаточно эту линию (как выяснялось выше, в п. 2с[68]) отложить на ней же самой (для большей ясности это можно сделать с ее другого конца). Этот общий геометрический принцип можно детализировать, как детализировали мы в § 65 аксиомы счета. Тогда его можно заменить рядом аксиоматических утверждений, из которых наиболее важны такие два. 2. Две или несколько геометрических фигур конгруэнтны между собою, если соответственно конгруэнтны их элементы. Эта аксиома, во–первых, может являться аналогией для коммутативного и ассоциативного закона в арифметике. Если имеется линия и на ней точка, делящая эту линию в том или другом отношении, то безразлично, какую из этих обеих частей сначала откладывать на новой прямой; сумма их все равно будет конгруэнтна данной линии (коммутативный закон). Также, имея линию, разделенную на несколько частей, можно в любом порядке откладывать эти части; сумма от него не изменится (ассоциативный закон). Не требует пояснений и геометрический аналог дистрибутивного закона. Эта же аксиома охватывает и аксиому Гильберта ΙΠ 2: «Пусть А В и ВС—два отрезка на прямой а без общих точек; далее, пусть А'В' и В'С' — два отрезка на той же или на другой прямой а' тоже без общих точек. Если при этом А В конгруэнтна А' В' и ВС, то всегда также АС конгруэнтна А'С'». 3. Две фигуры, конгруэнтные третьей, конгруэнтны между собою. Нет нужды пояснять полнейшую аналогию этой аксиомы с общей идеей арифметической конгруэнтности, формулированной выше, в § 65.2а. Ее считает нужным ввести в число своих аксиом конгруэнтности и Гильберт. с) Наконец, эти общие аксиомы геометрической конгруэнтности могут быть распространены и на отдельные фигуры, если иметь в виду соответствующие аксиомы едино–раздельности. Таковы аксиомы: 1. Каждый отрезок может быть однозначно определенным образом отложен по любую сторону на любой прямой от любой точки. 2. Каждый угол может быть однозначно определенным образом отложен в любой плоскости по любую сторону при любом луче. 3. Каждое тело может быть однозначно определенным образом построено в любом пространстве при соответствующих координатных данных. 5. В заключение остается еще сказать несколько слов относительно связи аксиом конгруэнтности с предыдущими аксиомами. Если мы обозначим аксиомы едино–раз–дельности через А, аксиомы непрерывности через В, аксиомы конгруэнтности через С, то, минуя полную систематику всех возможных здесь геометрических комбинаций (что мы делаем во втором томе), можно покамест отметить такие четыре комбинации: 1) А, В, С, 2) А, не–В, С, 3) А, <В>, не–С, 4) А, не–В, не–С. Что касается первой комбинации, то ясно, что она (со включением аксиомы параллельности, которую мы еще не рассматривали) есть наша обыкновенная элементарная эвклидовская геометрия. Но что такое вторая комбинация? Может ли существовать пространство, которое подчинено аксиомам еди–но–раздельности и конгруэнтности, но не подчинено аксиомам непрерывности? Очевидно, такое построение невозможно. Допустим, что наши линии прерывны, что наше пространство не гарантирует нам возможности его заполнить и что, скажем, откладывая наш отрезок на какой–нибудь прямой, мы вдруг убеждаемся, что он разломился и внутренняя последовательность его точек прервалась. Можно ли после этого ожидать, что весь отрезок целиком уложится на прямой, где ему будет отведено такое же место, какое он занимает сам по себе? Ясно, что эти два отрезка при взаимном наложении не будут совпадать. Следовательно, геометрия, в которой нет идеи непрерывности, не может иметь и идеи конгруэнтности. Что такое третья комбинация? Возможна ли едино–раздельная непрерывность без конгруэнтности? Если бы она была невозможна, то конгруэнтность была бы пустым [понятием] без всякого смысла и она ничем не отличалась бы от самой непрерывности. Тут–то как раз и выясняется все своеобразие этой категории. Когда фигура непрерывна, [она] в то же время [может быть] лишена идеи конгруэнтности. Тут выясняется именно структурный характер конгруэнтности, в отличие от которой непрерывность касается только факта, становящегося факта построения, а не структуры этого построения. Такую геометрию, вообще говоря, можно было бы назвать непаскалевой, поскольку в ней отсутствует известная теорема Паскаля о пересечении сторон угла параллельными линиями (или, что то же, о шестиугольнике, вписанном в коническое сечение, имеющее форму двух прямых) и поскольку эта теорема связана с законом коммутативности умножения. Однако для точности надо сказать, что в непаскалевой геометрии соблюдаются как оба ассоциативных и оба дистрибутивных закона, так и коммутативный в сложности. Если к этому присоединить аксиому непрерывности, то нетрудно дедуцировать отсюда коммутативность умножения, т. е. тем самым теорему Паскаля. Следовательно, хотя упомянутая комбинация А> В, не–С внешне и выражена, если брать эти категории в чистом виде, но те из <.··>> которые наблюдаются в геометрии архимедовой и паскалевой (а также еще и дезарговой, ср. выше теорему Дезарга о проектности треугольника в § 63.5), делают невозможным объединение дезарговой, архимедовой и непаскалевой геометрий. Что касается, наконец, четвертой комбинации, в которой отсутствует и непрерывность, и конгруэнтность, τό если вообще мыслимо отсутствие одной из этих категорий, то вполне представимо и отсутствие их обеих. Можно даже сказать, что эта геометрия и не может не быть непаскалевой, раз она неархимедова (как это видно из предыдущего). Вообще говоря, в суждении о всех этих типах геометрических построений можно руководствоваться следующей схемой[69].
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |