АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
ИНФИНИТЕЗИМАЛbНО–ЛОГИЧЕСКИЙ СЛОВАРb
На этом мы закончим наше краткое сообщение о применении метода бесконечно–малых к логике. Вернее, это не сообщение, а только предложение, только скромный намек на ту область, которая не может не быть огромной. Логика и математика не могут настолько расходиться между собою, чтобы не иметь ничего общего в своих построениях. И во всяком случае, логика не имеет никакого права настолько отставать от математики, чтобы совершенно не иметь никакого представления о том, что сейчас творится в математике. С другой стороны, те, кто любит говорить фразы о базировании философии на науке, должны же когда–нибудь перейти от фраз к делу, если только они считают математику за науку. О несовершенствах нашего предложения нечего распространяться. Они очевидны и так. Но следует во всяком случае усвоить то, что сама категория бесконечно–малого и сам метод бесконечно–малых уж во всяком случае необходимы в логике. Они, конечно, нисколько не заменяют других методов, ибо сама же математика содержит много других, принципиально различных методов, не говоря уже о науках нематематических. Мы, однако, хотели перейти от фраз к делу по крайней мере на одной науке, да и то из этой науки взяли только один метод, чтобы применить его в логике и тем базировать философию на науке хотя бы в этом отдельном вопросе. Дело других исследователей предложить еще другие математические методы в логике и даже другие нематематические.
В качестве заключения и резюме мы только хотели бы дать примерный словарик математических и логических категорий, твердо веря, что если не это соответствие, то во всяком случае какое–то другое должно необходимо быть между обеими науками.
Вот какие математические категории мы изучили в предыдущем и вот каков их перевод на язык логики.
Математический анализ
| Логика
| 1. x—независимое переменное, аргумент (геометрически— абсцисса)
| 1. Материальные вещи
| 2. у—функция от χ (геометрически —ордината)
| 2. Отражение материи (в частности, обобщенно-существенное в мышлении)
| отношение функции к х аргументу3.
|
отношение функции к х аргументу
3. Познание
| 4. Непрерывность
| 4. Чистая, неразличимая в себе и абсолютно текучая чувственность
| 5. ∆x—произвольное (в частности, конечное) приращение аргумента
| 5. Конечное изменение вещи (конечное различение в чувственном предмете)
| 6. ∆y—соответствующее приращение функции
| 6. Конечное изменение отражения, или выражение его в видовом понятии (конечное различение в чувственном опыте)
| .--отношение приращений функции и аргумента, или тангенс угла наклона секущей данной кривой, соединяющей две крайние точки ее нарастания, к оси х-ов7
|
.--отношение приращений функции и аргумента, или тангенс угла наклона секущей данной кривой, соединяющей две крайние точки ее нарастания, к оси х-ов
7. Чувственное познание конечных и неподвижных вещей при помощи дробления родовых понятий на твердые и неподвижные виды
| 8. Те же ∆x и ∆y, рассматриваемые как бесконечно-малые приращения аргумента и функции
| 8. Бесконечно-малое изменение вещи и зависящее от него бесконечно-малое изменение отражения (или ее родового понятия)
| отношение бесконечно-малых приращений функций и аргумента, или отношение их непрерывных становлений[217]9.
|
отношение бесконечно-малых приращений функций и аргумента, или отношение их непрерывных становлений[217]
9. Чувственное познание непрерывного и бесконечного становления вещей
| то же самое, что и предыдущая категория, но с выдвиганием предела этого отношения, иначе — производная, или тангенс угла наклона касательной данной кривой к оси х-ов10.
|
то же самое, что и предыдущая категория, но с выдвиганием предела этого отношения, иначе — производная, или тангенс угла наклона касательной данной кривой к оси х-ов
10. Закон чувственного познания непрерывного и бесконечного становления, или принцип становления видовых понятий из данной родовой общности, или «основание деления» родового понятия
| 11. Дифференцирование, или нахождение производной
| 11. Нахождение принципа непрерывного становления частностей из общего
| 12. Дифференциал
| 12. Спецификум частности, или «видовое различие», для непрерывно становящихся видов данного родового понятия
| 13. Интегрирование
| 13. Нахождение принципа непрерывного становления родовой общности из частностей
| 14. ƒx dx—неопределенный интеграл, или результат действия, обратного дифференцированию, или интеграл как функция своего верхнего предела, или—геометрически — получение семейства бесконечного количества кривых из производной (п. 10)
| 14. Родовая общность, возникающая из исследования принципа непрерывного становления видовых понятий и примененная к бесконечному числу всевозможных частностей в качестве принципа их познания
| 15. Определенный интеграл, или интеграл как предел суммы; геометрически—длина кривой, площадь, объем
| 15. Закон непрерывного становления родовой общности из суммы бесконечного количества бесконечно близко сходящихся видовых частностей и результат[218]их познания
|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | Поиск по сайту:
|