АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Гауссовское представление

Читайте также:
  1. Религиозное представление.
  2. Чувствительное познание протекает в трех основных формах: ощущение, восприятие, представление.

 

а) Гауссовское представление мнимости сводится к следующему. Пусть мы имеем в круге перпендикуляр, опущенный с какой–нибудь точки окружности на диаметр. В полученном таким образом прямоугольном треугольнике (с прямым углом, опирающимся на диаметр) этот перпендикуляр, как известно из элементарной геометрии, будет средним пропорциональным между обоими отрезками диаметра. Для простоты будем считать, что этот перпендикуляр будет совпадать тоже с диаметром и что радиус данного круга равен единице. Тогда, рассматривая оба диаметра как оси координат, мы получаем отрезок первого диаметра направо = + 1, отрезок того же диаметра налево от центра координат = — 1, а отрезок второго диаметра поверх =√(+1)•(­1)= √−1=i. Мнимое число, следовательно, есть квадратный корень из произведения положительной единицы на отрицательную.

Конечно, это понимание мало чем отличается от первого, где фигурирует просто √-1. Однако тут есть такое отличие, которым никак нельзя пренебрегать в диалектике. В чем тут дело?

Тут, прежде всего, два момента—умножение положительной единицы на отрицательную и извлечение из этого произведения квадратного корня. От первого способа представления мнимости (√-1) этот способ отличается только прибавкой умножения подкоренной отрицательной единицы на положительную. Эта прибавка означает одно из двух (то и другое есть одно и то же): или положительная единица движется (утверждается) в отрицательной области, или отрицательная единица движется в положительной области. И в том и в другом случае подчеркивается двуплановость смысловой образности числа. Отрицательное число само по себе есть сфера идеальная по сравнению с положительным числом, наличие же положительного числа в этой отрицательной области, т. е. различие нового утверждения в сфере чисто смысловой, есть, конечно, усиление этой смысловой сферы в смысле ее выразительности и фигурности. Точно так же положительное число мыслится как нечто реальное в сравнении с отрицательным числом, наличие же отрицательного числа в этой положительной сфере вносит в нее, несомненно, момент смысловой оформленности и фигурности. Стало быть, оба случая, т.е. (+1)·(—1) и (— 1) (+1), в одинаковой мере вносят в основное представление i как √-1 момент [двойной ] оформленности, выразительности, или фигурности; и тем самым здесь обусловливается то, что гауссовское представление мнимости заметным образом синтезирует в себе субстанциальное трактование числовой образности в √-1 и смысловое ее толкование в синтезе нуля и бесконечности, давая, таким образом, некое уже не просто субстанциальное, не просто смысловое трактование мнимости, но синтетически–вещественное трактование (поскольку «вещь» есть синтез «субстанции» и «смысла», или «идеи»).

2. Однако гауссовское представление мнимости гораздо богаче того, что мы только что сказали. Оно богаче не только своим геометризмом (он, конечно, есть нечто прикладное), но и наглядностью] в более тонком, не прямо пространственном смысле. Именно, тут наглядно дано направление мнимости в сравнении с направлениями положительным и отрицательным. В более детальном понимании этого явления здесь три момента. Во–первых, это пересечение мнимой осью оси вещественных точек в нулевой точке. Во–вторых, это перпендикулярное направление мнимой оси в отношении вещественной. В–третьих, это общий смысл происходящего здесь перехода из линейной области в плоскостную[191].

3. Что касается первого момента, то он интересен как новое доказательство того, что мы имеем здесь дело с начерченным контуром. Ведь нуль уже сам по себе есть граница положительных и отрицательных чисел. И тем не менее через эту границу проходит еще одна граница, зависящая теперь уже вовсе не от того, что в точке — нуль, но совсем от другой причины. Величина эта определяется тем, что мы извлекаем квадратный корень из произведения положительной и отрицательной величины. Если с точки зрения нуля, как равновесия между утверждением и отрицанием, здесь был наличен просто факт границы, — потому что ведь и в положительном, и в отрицательном числе речь идет только о факте числа (или о его отсутст–вин), или, как мы говорили, о внешнем инобытии числа, — то с точки зрения операции извлечения корня из отрицательности эта граница дается здесь в своей начерченности, в своей картинности и фигурности. Оба эти момента здесь совпали, и мы имеем в нуле не просто границу вообще, но и очерченно–заполненную границу, начерченную, как бы жирно проведенную границу. Таким образом, мнимая величина, являясь в вещественном смысле нулем (потому–то мнимая ось и проходит через нулевую точку вещественной оси), в более общем смысле отнюдь не является просто нулем. Там, где нет ничего вещественного, оказывается, кое–что может существовать. Может существовать фигура вещи, ибо сама–то фигура вещи отнюдь не есть вещь и не есть даже [нечто] вещественное. Фигура вещи отличается от самой вещи, — иначе мы и не употребляли бы такого слова — «фигура», а просто говорили бы «вещь». Отличаться от чего–нибудь можно только тогда, когда отличное не есть то, от чего оно отлично, — иначе не осуществилось бы и само отличное. Итак, фигура вещи (а тем более числа) — невещественна, в вещественном смысле она—нуль. Без посредства вещества она уже есть нечто, некое самостоятельное смысловое бытие, в котором существует и своя, чисто смысловая, материя, и свои, чисто смысловые, идеи, и свои синтезы того и другого. Это и выражено в гауссовском представлении мнимости.

4. Весьма интересен и второй момент в этом представлении— перпендикулярность линии мнимости к линии вещественных чисел. Что это значит? Перпендикуляр есть геометрическое место точек, равноотстоящих от данной прямой. Другими словами, это есть линия, таковым образом расположенная относительно другой линии. Но эта одинаковость расположения может быть выражена по–разному — смотря по тому, имеется ли в виду параллельность или перпендикулярность. Параллельность есть одинаковость расположения двух линий, когда они берутся в движении; это одинаковость движения (направления) разных линий. Понятие перпендикулярности предполагает обе линии (или по крайней мере одну из них) совершенно неподвижными, а имеется в виду содержание, статическое содержание одной линии и одинаковость расположения к этому другой линии. Перпендикулярность есть одинаковость расположения одной линии к статическому содержанию другой линии.

Перпендикулярность мнимой линии к вещественной, стало быть, означает, что мнимость находится в одинаковом расположении к статическому содержанию вещественной положительности и вещественной отрицательности. Мнимость абсолютно одинаково расположена в отношении положительного и отрицательного содержания. Но это и значит, что мнимость есть граница, начерченная между положительным содержанием числа и содержанием отрицательным. Ибо только граница одинаковым образом расположена как к ограничиваемому, так и к ограничивающему. Окружность круга, например, является абсолютно тою же окружностью, смотреть ли на нее изнутри, с точки зрения положительного содержания круга, или смотреть на нее извне, с точки зрения фона, окружающего данный круг. То самое очертание, которое ограничивает данный кусок пространства, оно же и — вырезывает этот кусок и из окружающего пространства. Вот это–то и зафиксировано в том, что линию мнимостей Iaycc понимает как перпендикулярную к вещественной линии в ее нулевой точке. Только так и можно диалектически понять природу этой мнимой перпендикулярности, если не ограничиваться одной арифметически–счетной точкой зрения.

5. Наконец, третий момент гауссовского геометрического представления мнимых величин заключается в следующем; и этот момент является самым важным, самым принципиальным и решающим. Дело в том простом факте, что если разница положительного и отрицательного на прямой есть не что иное, как разница ее направлений, то разница вещественного и мнимого предполагает выход вообще за пределы прямой и переход в новое измерение. Не будем говорить о перпендикулярности, а сосредоточимся пока вообще на переходе от линии к плоскости. Оказывается, мнимость потребовала в данном случае перехода от линии к плоскости. Что же это значит в философском отношении? Вспомним наши рассуждения о природе пространственного измерения (§ [55]). Мы установили, что всякое пространственное измерение в отношении другого есть нечто алогическое, оно — чистое становление, причем эта инобытийность есть именно субстанциальная инобытийность, а не только смысловая. Ведь становление возможно и в пределах и данного отрезка прямой; и тут мы сталкиваемся с явлениями измеримости или неизмеримости, несоизмеримости. Это будет алогическое становление в пределах данной линии. Когда же мы переходим от линии к плоскости, то тут у нас совершается переход в такое бытие, которое субстанциально отлично от бытия линии, и это есть уже субстанциально самостоятельное алогическое становление. Так вот, мнимая величина требует субстанциального перехода в инобытие.

Но только ли это? Если бы здесь шла речь просто о переходе в другое измерение, то этот переход сам по себе ровно ничего не говорил бы о мнимости. Получилось бы два вещественных измерения, как обычно бывает, например, при измерении площадей, и больше ничего. Вся сущность вопроса в том и заключается, чтобы перейти от одного измерения в другое без реального перехода в это последнее. Правда, в иррациональном числе мы тоже перешли в другое измерение. Однако, повторяю, там не шла речь о субстанциально новом измерении. Там имелось в виду смысловое же становление внутри данного измерения. В нашем же случае мыслится субстанциальный переход в другие измерения, но реально не совершается, а только мыслится, преображается[192], или отображается. И там, и здесь, следовательно, дано только мысленное, смысловое представление измерения; но в первом случае (для иррационального числа) это есть смысл внутреннего же смысла данного измерения, во втором же случае (для мнимого числа) это есть смысл субстанциально нового измерения, зафиксированный в данном измерении.

Ясно, что это возможно только потому, что мнимая величина есть отрицание одного измерения в другом, представление одного измерения при помощи другого. Пусть я имею прямую и хочу говорить о плоскости только при помощи одной прямой, не переходя реально в эту плоскость. Это будет значить, что я оперирую с мнимыми прямыми (или, если угодно, с мнимыми плоскостями). Пусть я имею плоскость и хочу при помощи одних плоскостных категорий рассуждать о пространственном теле — у меня получатся мнимые плоскости. Наконец, я могу пространство четырех измерений изобразить при помощи трехмерного пространства. Тогда у меня получится усложненное трехмерное пространство, в котором будут участвовать мнимые величины.

И сколько бы измерений мы ни брали, всегда, когда зайдет речь о переходе одного пространства на другое, мы должны будем прибегать к помощи мнимых величин. Ясно: мнимая величина есть отображение в данном вещественном измерении какого–нибудь другого измерения. Данная вещественная величина получает здесь некое новое смысловое оформление, получает внутреннюю перспективу, некий смысловой рисунок, фигурность, не зависящую от того, что мы двигались внутри этой величины, ибо, пока мы были там внутри, мы не могли видеть ее внешнего контура и фигуры и самое большое — это могли только двигаться там в разных направлениях, т. е. устанавливать фигурность ее внутреннего содержания, а не фигурность ее вообще. Теперь мы взяли эту внутреннюю представленность величины, отошли от нее на некоторое расстояние и тем самым наметили возможность зафиксировать эту величину уже как таковую, со всей ее величий ]ной фигурностью, на фоне окружающей действительности. Взять внутреннюю представленность величины из самой величины — это значит взять отрицательную единицу. Отойти от величины на некоторое расстояние, чтобы ее видеть, — это значит отличить ее от того, что ее окружает, т. е. перейти в отношении ее в сферу алогического становления, т. е. в новое измерение. И наконец, находясь в ртом новом измерении, обратить взоры на покинутую величину, с тем чтобы ее увидеть, т. е. с тем чтобы определить тот исходный пункт, который лежит в основе самой ее представленности, — это значит извлечь квадратный корень из отрицательной единицы.

Так понимание Гаусса дает нам возможность философски интерпретировать самый смысл перехода от линейного представления к плоскостному, перехода, содержащегося в самом существе мнимой величины.

8. Если коснуться исторической стороны дела, то справедливость заставляет отметить, что уже Валлис имел полное представление о том, что невещественные корни алгебраических уравнений располагаются по прямой, перпендикулярной к линии вещественных корней, так что уже у него мнимая величина была [в виде] среднего пропорционального между положительной и отрицательной величиной[193]. Валлис действовал в конце XVII в.; ровно через столетие, в 1797 г., К. Вессель выпустил на датском языке труд с таким же представлением мнимости, который, однако, стал известен широким кругам только после перевода его на французский язык уже в конце XIX в.[194]Незамеченной прошла и аналогичная работа Арганда[195]в начале XIX в.[196]И только Гаусс в 1831 г. своей знаменитой работой о биквадратных вычетах сделал изложенную геометрическую теорию комплексных чисел популярным достоянием всех[197]. Изучение взглядов Гаусса, однако, не дает ровно никакого философского результата, если ограничиться текстом самого Гаусса. Единственная мысль его заключается только в том, что мнимая величина есть среднее пропорциональное между + 1 и — 1 и что для ее представления необходимо из линейной области выйти в плоскостную. Этот принцип — колоссальной, решающей важности. Но всякому ясно, что он имеет чисто математическое значение; и для философии он не больше как сырой материал. Наша концепция мнимостей, кажется, впервые превращает это гауссовское понимание в чисто философскую теорию.

 

§ 107· Некоторые детали.

 

Чтобы не оставалось никаких неясностей в диалектической концепции мнимой величины, сделаем еще ряд добавочных замечаний.

1. Надо помнить, что кроме мнимой оси в нулевой точке вещественной оси и в этом же перпендикулярном направлении проходит еще также и вещественная ось (если брать прямоугольные координаты). Спрашивается: какая существует разница между мнимой осью и второй, вещественной осью (именуемой обычно «ордината», или ось у–ков)? Тут приходится волей–неволей стать на точку зрения развиваемой у нас теории мнимостей и сразу же отбросить всякое иное толкование. Но это обстоятельство остается весьма поучительным и требует четкого диалектического анализа.

В самом деле, что тут происходит с вещественной осью и в чем же разница между обычной вещественной абсциссой и мнимой ординатой? Привлекая рассуждения, развитые раньше, будем думать так. Когда имеется в виду вещественная граница, это значит, что сама эта граница не фиксируется как таковая. Фиксируя границу как таковую, мы берем ее как чисто смысловую, а не как вещественную. Вещественная ось [есть] субстанциальное осуществление смыслового. Это дерево есть материальное осуществление некоего смысла, некоей идеи дерева. Стало быть, линия, точка и все, что существует, может быть чисто смысловым и чисто вещественным. Они, конечно, находятся в одном и том же месте и «имеют одно и то же направление», как и относительно дерева мы должны сказать, что идея дерева «находится там же», где и само дерево, и что она «имеет то же направление» своего действия и проявления, что и само дерево. И тем не менее это совершенно разные конструкции.

Если мы имеем в виду вещественную абсциссу, то так мы ее и чертим как вещественную, ничем не отличая, в смысле вещественности, от ординаты. Но когда мы имеем в виду мнимую ось, мы не ограничиваемся проведением простой вещественной ординаты, но углубляемся на фоне этой вещественной абсциссы в ее чисто смысловое содержание и берем ее не во всей ее вещественной и телесной осуществленное™, но только в ее принципиальной, смысловой структуре, в ее идеальном содержании и фигуре. Поэтому, хотя мнимая ордината имеет «то же» направление, что и вещественная, и хотя она проходит через гу же нулевую точку абсциссы, что и вещественная абсцисса, все же разница между той и другой — огромная, и не понимать ее значит вообще не понимать природы мнимой величины.

2. В этом учении о мнимости ум, не привыкший мыслить чистый смысл, встречается с трудностями, которые возможно преодолеть только путем длительного педагогического воздействия и самовоспитания. В самом деле, как мыслить это чисто смысловое, идеальное? Как отличить его от вещественного, которое так «понятно» всем и каждому? Тут мы можем только призвать на помощь некоторые аналогии, облегчающие представление мнимостей, но надо помнить, что настоящее понимание, как таковое, не имеет никакого отношения ни к каким аналогиям, и оно должно функционировать без всякой помощи с их стороны. Учиться же на аналогиях всегда полезно.

а) Первая аналогия, которую можно было бы привести, есть аналогия с зеркалом. Видя предмет в зеркале, мы, несомненно, имеем некий его образ. Сказать, что в зеркале присутствует сама вещь, — можно, но ясно, что она присутствует здесь не своей субстанцией (иначе получились бы две вещи, а не одна вещь со своим отражением в зеркале), но лишь своей образностью. Спрашивается: где эта образность находится? Ответить на этот вопрос довольно затруднительно, — во всяком случае не легче, чем на вопрос о «местонахождении» идеального, смыслового. Пусть знатоки вещественности ответят на вопрос: где и как «находится» зеркальное изображение вещи? Сказать, что оно находится «в» зеркале — это значит ничего не сказать, так как и без этого ответа всякому ясно, что изображение находится в зеркале. Этот факт сам по себе вполне очевиден и несомненен. Речь идет совсем о другом: что значит этот очевидный и несомненный факт и как его объединить? Вещь занимает место, имеет определенный объем, вес, плотность, массу и т. д. Ничего подобного нет в зеркальном изображении вещи. И тем не менее то, что мы видим в зеркале, есть сама вещь, сама вещь в смысле ее образа. Эта образность и есть «мнимая» вещь, ибо под «мнимостью» мы и понимаем чисто смысловую образность вещи, которая, раз она именно чисто смысловая образность, не есть вещь и даже не есть нечто вещественное. Изображение вещи имеет свои собственные размеры, причем законы этой размерности не есть законы строения самой субстанции вещи. Изображение вещи в зеркале, как это легко созерцается, находится даже на том или на другом расстоянии от поверхности зеркала, т. е. от вещественной области, хотя это расстояние и оценивается как будто совсем иными мерами, чем вещественные расстояния. Словом, зеркальное изображение живет своей собственной жизнью и связано оно с вещественной стихией вещи тоже весьма своеобразно. Оно, строго говоря, нигде не находится, его вещественные размеры равны нулю, и оно есть смысловая образность вещи, ее «мнимое» изображение.

Так и нужно представлять себе мнимую величину. Она дана в веществе как бы перспективно, и ее контуры абсолютно не поддаются никакому вещественному воздействию; они абсолютно тверды и резко очерчены, и их нельзя стереть или подделать. Это и есть чистая и абсолютная граница и очерченность вещи, ее конкретно–смысловая фигурность и образность.

b) Вторая аналогия относится к более грубому представлению гнущейся, или проваливающейся, поверхности. Поверхность, например, покрытая воском, может воспринять на себя печать и путем продавливания тех или других линий дать изображение определенной вещи. В сущности, это почти та же аналогия, что и с зеркалом. Но только эту вдавленность надо понимать обязательно идеально и чисто смысловым образом. «Мнимое» изображение заставляет поверхность как бы проваливаться внутрь, и это проваливание — не пространственное, а образное, перспективное, некая смысловая печать вещи.

3. а) Подобные аналогии делают понятным и то, что в математике носит название специально комплексной величины. Если мнимая величина [есть i], а [х, у]— оси координат (причем [у] оказывается расположенным, согласно предыдущему, по мнимой оси, а [х]— по вещественной), то величина <x+yi) называется не просто мнимой, но — комплексной. Смысл этих [x,y] здесь, конечно, совсем другой, чем в обычных координатах. Обычно <y =f(x)>, т.е. имеется только одно независимое переменное [х] и [у]— от него функция. В случае с комплексным переменным — два независимых переменных, [х, у] и функцией является уже третья величина &#950;, так что z = x+yi. Таким образом, здесь мы имеем определенный вещественный &#967; в соединении с определенным мнимым у. Что значит это соединение? Так как мнимая величина есть смысловая образность числа, то, полагаясь на вещественную величину, она должна ее деформировать с точки зрения идеи, заложенной в этой образности. Вещественная величина должна здесь получить новый вид, новую форму, получить иные границы; она должна как бы отразиться в зеркале и из «реальной» вещественности превратиться в «мнимую» выразительность. Перпендикулярность мнимой оси обеспечивает здесь единообразие деформации вещественной величины во всем ее составе и смысловом содержании, и, таким образом, вся вещественная величина, во всем своем составе, одинаково подвергается этой новой смысловой обработке.

b) Будем брать указанную выше аналогию с зеркалом. Ось у–коъ в этом смысле есть линия, идущая от поверхности зеркала в его перспективную глубину. Слово «идущая», конечно, нужно понимать не вещественно, но изобразительно, ибо на то это и есть «мнимая» величина. Это — как бы показатель того, что вообще происходит со всяким предметом, если наблюдать его отражение в зеркале. Уже грубое наблюдение показывает, например, что, чем предмет находится ближе к зеркальной поверхности, тем больше размеры его зеркального изображения; и, чем он дальше от нее, тем это изображение меньше. Ось ^-ков и есть показатель этого перспективного свойства зеркала вообще. Тут еще не ставится никаких реальных вопросов о той или иной вещи. Здесь дана только эта общая координата, являющаяся критерием зеркальной перспективы, подобно тому как абсцисса при движении от нуля слева направо является критерием абсолютной величины положительных чисел. При наличии такого перспективного критерия возникает вопрос уже и о применении его к той или другой вещественной величине. Эту вещественную величину дает здесь линия (функция) х. Беря эту величину и применяя к ней перспективный критерий мнимой ординаты, мы и получаем перспективное изображение данной вещи и обозначаем его через <x+yi).

c) Здесь необходимо, как и везде, учитывать математический формализм, основанный на том, что число есть «равнодушная к себе самой определенность». Какое бы содержательное построение математическая формула в себе ни отражала, она всегда дает такое построение чисто количественно, дает числовым способом, при помощи чистого числа, и потому сознательно отстраняет от себя все понятное содержание данного построения, беря его только постольку, поскольку из него можно получить ту или иную числовую комбинацию. Понятийное содержание дано тут постольку, поскольку оно определяет собою специальные взаимоотношения тех или иных числовых операций. Также и в случае с комплексными величинами перевод вещественной величины в мнимую область может быть дан только чисто формально, путем только одних числовых взаимоотношений, без всякого учета онтологического содержания и смысла затронутых тут вещественной и мнимой областей. И как же это делается?

d) Что происходит в зеркале? В зеркале происходит деформация вещи. Но математик сознательно отбрасывает от себя и знание того, что это за вещь (стол, стул и т. д.), и знание того, что такое зеркало, и даже знание самого процесса отображения. Все это содержательно понятные построения, которые отнюдь не «равнодушны» к своей определенности, а, наоборот, потому–то и интересны, что имеется в виду их содержательная и предметно–существенная определенность. Математика интересуется только одним: вот вещь, и вот ее деформация — какое отношение между ними? И при таком принципиальном формализме (а иначе это не была бы математика) весь вопрос сводится только к сравнению данных очертаний вещи с деформированным. Ясно, что основной категорией в этом сравнении будет категория направления, ибо все отличие деформированной вещи от самой вещи заключается только в том, что ее очертания приобретают здесь новое направление. Направление есть то формализи–рованное понятие, которое только и может употреблять тут математика. Возьмем все реальное изображение вещи в зеркале со всей его конкретностью и — забудем, что такое эта вещь, а сосредоточимся только на ее очертаниях. Сравнивая эти новые очертания вещи с первоначальным, мы тут не найдем ничего иного, как только разницу в направлении этих очертаний.

Если бы мы рассуждали чисто геометрически, то мы еще могли бы говорить об измерении, а не о направлении; и эта категория была бы все же ближе к содержательности онтологических установок. Но мы хотим говорить о комплексных величинах исключительно арифметически (или арифметически–алгебраически). Поэтому геометрия здесь есть только сфера приложения. Значит, приходится разыскивать более абстрактный термин для выражения перспективного строения числа. И таким термином является термин «направление».

4. [а)] Вот почему комплексная величина <x+yi> изображается при помощи вскрытого сложения. Вектор есть как раз такая величина, которая определенным образом направлена. Следовательно, мнимость, положенная на вещественную величину, с математической точки зрения попросту только меняет ее направление и больше ничего. Надо сложить вещественную и мнимую функции как векторы, чтобы получить искомое нами зеркальное изображение вещи. Мы тут накладываем одно направление на другое — попросту складываем оба эти направления — и получаем новую точку (и, следовательно, новое построение), которое будет уже не чистой мнимостью и не чистой вещественностью, но отображенной, изображенной, перспективно осмысленной вещественностью — комплексной величиной.

b) Нечего и говорить о том, что «направление», которое имеется здесь в виду, есть направление совсем особого рода, не обычного вещественного характера. Это — направление в глубь зеркала, в глубину [мыслимости], направление нового измерения. Тут все время нужно иметь в виду аналогию с перспективой. Как в перспективе предмет уменьшается в своих размерах и тем самым происходит его оригинальная деформация с точки зрения созерцающего (хотя в вещественном смысле она и равняется только нулю), так и комплексная величина дает нам перспективную картину вещи, деформируя так или иначе ее контуры и давая им новый закон построения, без реального перехода в новую вещественность. Эта деформация может иметь уже сама по себе нулевое значение; тогда образ вещи будет вполне адекватно выражать реальные очертания вещи, нисколько их не деформируя, но это не помешает ему остаться чисто комплексной (или мнимой) величиной, так как образ вещи все равно не есть сама вещь и не есть нечто вещественное. Это смысловая, а не вещественная структура.

c) В том, как представляется в математике комплексная величина, дан, следовательно, анализ числа с точки зрения его образной структуры. Тут отдельно даны вещественные и образные моменты, т. е. [они] абстрактно выделены из общей числовой стихии и, кроме того, даны в целесообразном объединении, адекватно отражающем отношения, остававшиеся невскрытыми до этого анализа в нетронутой стихии числа.

5. Подводя итог развиваемого здесь учения о природе мнимого (или комплексного) числа и давая ему самую простую, самую ясную и самую краткую (все это, конечно, — с точки зрения диалектики) формулу, мы должны употребить термины, которые, по существу говоря, должны были бы появиться у нас уже с самого начала, поскольку того требовал порядок появления у нас диалектических категорий математики, но которые, ради ясности изложения, необходимо употребить именно теперь, когда уже вскрыты некоторые основные элементы категории мнимой величины.

[а)] Тут идет речь о рациональном и иррациональном числе и об их диалектическом синтезе. Мы ведь помним, что иррациональное число рассмотрено нами, кроме основной установки, также еще с точки зрения категорий непрерывности, прерывности и предела. После диалектики предела мы перешли прямо к диалектике мнимых величин, проследивши назревание этой категории еще в сфере учения о пределах. Но мы не связали всю категорию рационального со всей категорией иррационального. А между тем рациональное — иррациональное — мнимое есть вполне точная диалектическая триада[198]подобно тому как и триада нуль — бесконечность — мнимое также есть всецело диалектическая и рассмотрена нами по существу. Остается указать на синтетическую тождественность рационального и иррационального в мнимом, и тогда эта категория мнимости в основном получит более или менее полное и существенное определение.

b) Мы знаем, что рациональное отличается от иррационального как понятие от вне–понят[ий]ного, как форма от оформляемого, как принцип от материала, подчиненного принципу. Само по себе рациональное есть только закон в отношении некоего материала, который подчиняется этому закону, или принцип и метод для некоей алогической массы, которая должна подчиниться этому закону или принципу. В этом сущность рационального во всесторонней взаимосоизмеримости отвлеченного и конкретного, так что все, что ни положено здесь отвлеченно, то тем самым дано и конкретно, так что тут нет ровно никакого противостояния или противоречия. Иррациональное, в котором конкретное распушено[199]размыто и тем самым получило изолированную свободу, является в отношении рационального чем–то алогическим, бесформенным, играющим роль простого материала (по аналогии, например, с сыпучими или жидкими телами, не имеющими своей собственной формы, но принимающими форму того или иного сосуда). Когда мы хотим объединить рациональное вместе с иррациональным, мы должны дать конструкцию, в которой бы оба эти принципа играли совершенно одинаковую роль. Необходимо, чтобы рациональное начало действовать взаправду как форма, а иррациональное — как оформляемое; и тогда обеспечено появление новой структуры, содержащей то и другое. Пусть мы имеем бесформенную кучу песку или глины, и пусть мы имеем отвлеченное понятие дома, человеческого жилья. Если мы захотели объединить то и другое, мы должны слепить из песка или глины дом. Что для этого надо? Для этого надо, чтобы бесформенная глина подчинилась отвлеченному понятию дома как некоей форме, принципу, как некоему методу оформления, а отвлеченное понятие дома перестало быть отвлеченным понятием и стало заданием и планом конкретной структуры.

c) Из этого объединения и получается наличность уже не просто формы и не просто оформляемого, но — само сформированное, которое в свою очередь предполагает сформированное, структуру. И вот эта–то структура и есть мнимое (комплексное) число. Мнимое число, чистая структурность числа не есть, таким образом, ни отвлеченное понятие числа (рациональное), ни материя числа (иррациональное), ни объединенность того и другого как факт (сделанная из глины вещь), но — объединенность того и другого как новый смысл, как смысл этого вновь появившегося факта, как конкретная структура факта. Это сделанность вещи из материала, хотя и не вещь и не материал вещи, определенная скомбинирован–ность алогического материала, осуществимость отвлеченного закона и задания, принципа и метода, данная как новая смысловая физиономия факта.

d) Можно сказать еще и так. Выше (§ 106.5) мы уже отметили, что в моменте алогически становящегося инобытия, если этот момент брать как таковой, в чистом виде, нет ровно никакой разницы между мнимым числом и числом иррациональным. Оба они предполагают, что некая рационально–вещественная величина вбирает в себя свое инобытие. Но какое именно инобытие? Внутри самой числовой структуры тоже есть инобытие; оно, как таковое, уже не выходит за ее пределы и оставляет самую субстанцию этого числа нетронутой. Число может объединиться с таким своим внутренним инобытием. Получится та внутренно–внешняя структура, которую мы выше именовали пределом. Но значит ли это, что число вошло тут в синтез с инобытием в абсолютном смысле, с инобытием в его субстанциальности, в его абсолютной независимости и самостоятельности? Конечно, нет. Это инобытие — внутреннее отличение[200]числа; и тут число входит поэтому в синтез со своим же собственным внутренним содержанием. Можно, однако, дать инобытию абсолютную, субстанциальную свободу. Это будет значить, что в поисках такого инобытия мы должны покинуть уже все число, а не ограничиваться только распут [ыв ]анием его внутреннего содержания. И вот синтез с таким инобытием будет уже синтез полный, абсолютный. Тут оба момента войдут в общий синтез действительно при полном равноправии. Это–то и есть комплексное число.

В рациональном числе тоже дан синтез бытия и инобытия, внутреннего и внешнего. Но этот синтез дан тут в свете первого члена, бытия, а инобытие тут подчинено ему, соразмеряется с ним. В иррациональном числе тоже дан синтез бытия и инобытия, внутреннего и внешнего. Но этот синтез предполагает здесь превалирование алогического инобытия, этой дробящейся внешности. Оба синтеза поэтому не могут быть окончательными. Первый, основанный на примере внутренней целостности, подчиняет все внешнее становление числа себе и считает его своим внутренним достоянием, в то время как оно свободно и от него само число не должно зависеть. Второй синтез, основанный на примере внешне–становящейся дробности, подчиняет все внутреннее себе и вовлекает его в стихию своего становления (то [т ] предел есть не что иное, как закон самого же этого становления), в то время как это внутреннее[201]должно быть совершенно свободно и независимо ни от чего внешнего. Тогда наступает пора для третьего синтеза, когда бытие и небытие, или внутреннее и внешнее, объединяются на основании своего чистого синтеза, т. е. когда примат остается не за внутренним бытием, не за внешним инобытием, а именно за их равноправным синтезом. Тогда и рождается комплексное число. Его вещественная часть есть та самая внутренняя целостность, которая уже не поглощает ничего внешнего и ничему внешнему не подчиняется. Его мнимая часть есть та самая внешняя выраженность, которая нисколько не мешает вещественной части существовать в ее полной свободе и которая также и сама нисколько ей не подчиняется, происходя из источника, субстанциально нового в отношении ее (из другого измерения). Самый же синтез тем не менее не есть [ни] только внутреннее <…>, ни только внешнее бытие, но совершенно новая положенность нового числового бытия, — бытие перспективное, в котором уже нельзя различить, где предмет и где его становление, где внешняя и где внутренняя его структура и направление.

В рациональном числе установлен только самый факт перспективы без ее конкретной формы, т. е. факт внут–ренно–внешнего синтеза; поэтому внутреннее и внешнее, логическое и алогическое просто совпадают тут и больше ничего. В иррациональном числе установлено то растекание факта перспективы, та алогизация внешности, без которой эта внешность не может превратиться в гибкий и податливый материал для перспективного оформления; поэтому внутреннее и внешнее тут просто не совпадают, и нужно бесконечно долго (и в (…) и в буквальном смысле бесконечно долго) трудиться, чтобы достигнуть этого совпадения. В положительном числе дан не голый бесформенный факт перспективы и не голая, оформляемая, текучая ее материальность, но сама перспектива в своей конкретной оформленности, фигурности, определенности и разграниченности.

е) Таким образом, для понятия мнимости достаточно уже простой антитезы рационального и иррационального. Все прочее может считаться детализацией, конгруэнцией и демонстрацией этого основного определения мнимости.

6. В заключение нашего рассмотрения комплексного числа необходимо было бы указать на ряд чисто математических теорем и правил в области этого учения. Делать это, однако, в данном месте не очень целесообразно ввиду того, что большинство интереснейших построений с этим мнимым i требует еще исследования таких китов математической мысли, как <…>, т. е. предполагает исследование трансцендентных чисел, чего мы еще не предпринимаем. Таков интеграл Коши, выражающий значение аналитической функции внутри замкнутой области регулярности через значения функции на контуре области. Такова теория Абелевых, и в частности эллиптических, функций или теория автомо[рфных] функций и т. д. Упомянем только ряд простейших положений теории комплексных чисел.

Таково прежде всего сложение комплексных чисел. Оно происходит по правилу обычного векторного сложения, через построение на слагаемых векторах параллелограмма. Как указывалось выше (§ [106]), это есть признак того, что комплексное число предполагает переход в иное измерение. Сложить два комплексных числа потому и равносильно сложению двух разнонаправленных вещественных векторов.

Комплексное умножение, предполагающее для множимого числа его растяжение и поворот, отличается от векторного (внешнего) умножения в вещественной области тем, что произведение остается здесь в той же плоскости и сама плоскость не получает никакого вещественного направления, как в умножении вещественных векторов.

Извлечение корня из комплексного числа геометрически есть не что иное, как деление окружности на то или иное число равных частей. А это в комплексных случаях должно предполагать переход окружности в иное измерение, т. е. [пониматься] как ее изгибание.

Известна теорема Коши: интеграл от регулярной аналитической функции, взятый по замкнутому контуру, равен нулю в области ее регулярности. Но, как известно, то же самое явление мы замечаем и в криволинейных интегралах. А криволинейный интеграл предполагает две вещественных переменных. Следовательно, и здесь мы наталкиваемся на тот факт, что комплексное число (или [мнимое]) соответствует переходу из одного измерения в другое.

Эту перспективность, лежащую в основе мнимой величины, нетрудно было бы показать и на многих других примерах как из математического анализа, так и из гидродинамики, теории[202]упругости, электромагнитной теории света, из теории потенциала и др.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)