|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Продолжение
Предыдущий параграф трактовал о воздействии аксиом непрерывности на аксиомы едино–раздельности. Теперь сделаем краткие замечания относительно воздействия последних аксиом на первые. 1. Общим отличием этой области аксиоматики является то, что мы ставим здесь ударение на самой непрерывности и что, следовательно, оно только отражает на себе те или иные категории едино–раздельности. Уже это одно устанавливает одну общую тему для всех возможных здесь суждений, а именно тему длительности, рас–ставленности, некоей процессуальное, которая устанавливается здесь взамен отвлеченно–числовой сферы едино–раздельности. a) В арифметике мы здесь уже не можем оиерировать только с отдельными числами, так как мы их получили уже на предыдущей диалектической системе. Поскольку в сфере непрерывности речь идет об инобытии в отношении всего числа как такового, мы можем здесь говорить только о некоей сплошной, неразделимой процессуальное. Но поскольку эта неразличимость берется на данной стадии нашего исследования не сама по себе, а лишь в свете различимых установок аксиом едино–раздель–ности, то она теряет свою сплошность и заменяет ее разрывными моментами, в результате чего от непрерывности остается только последовательность. Непрерывность в свете едино–раздельности есть последовательность. Типы ее и должна установить аксиоматика, — конечно, только в отвлеченно–принципиальном виде как мерило и исходную точку зрения для ищущих конкретных анализов. b) В арифметике мы имеем здесь дело, очевидно, с т. н. рядами, т. е. последовательностями, чисел, имеющими определенную структуру. Примитивным образцом этих рядов является арифметическая и геометрическая прогрессия, известная еще из элементарной алгебры. К этим рядам применима структура в зависимости от тех операций, которые мы установили выше. Если мы говорим, что в данном месте непрерывность нами рассматривается в свете едино–раздельности, то очевидно, что структура и должна определяться этой едино–раздель–ностью. А последняя свою наиболее зрелую форму получила у нас как раз в виде элементарно–математических операций. Так мы получаем ряд важнейших понятий высшей арифметики, которые мы рассмотрим в своем месте и для которых сейчас производим только общеаксиоматическую принципиальную установку, а именно: они все суть результат обработки аксиомы непрерывности с точки зрения аксиом едино–раздельности. Речь идет о группах целых чисел, определяемых теми или другими операциями. Если имеются в виду операции сложения и вычитания, говорят о модуле; если — умножение и деление, говорят о луче; если — сложение, вычитание и умножение, говорят о кольце (по примеру Гильберта Кронекер говорил «область целости» <…>); если, наконец, применяются все четыре основные операции, употребляют термины «тело», «корпус», «поле» (англичане), «область», «область радикальности» «…) — Кронекер). Можно себе представить также и числа на основе отсутствия принципа непрерывности. Их можно было бы назвать неархимедовыми числами по аналогии с геометрией, в которой отсутствует Архимедов принцип непрерывности и о которой мы упомянем ниже, в § 2е. 2. Немного подробнее, но все же не входя в специальный анализ, а лишь намечая аксиоматическую перспективу этого анализа, мы скажем и о геометрической области рассматриваемой модификации. Тут тоже принцип становления дает нам впервые возможность как осуществлять каждую категорию едино–раздельности изолированно от прочих, хотя между ними и непосредственная логическая связь, так и осуществлять их во всей их совокупности и цельности, принимая во внимание ориентацию сферы становления. Историческая геометрия выработала здесь следующие формы. а) Прежде всего мы можем оставить неприкосновенной только группу аксиом подвижного покоя и игнорировать все прочие аксиомы. Что это будет значить в смысле оформления изучаемой сферы становления? Это будет значить, что в наших геометрических фигурах мы будем соблюдать только последовательность элементов, и притом — так как теперь речь идет о применении к непрерывности принципа этой изолированной категории — мы теперь (будем) соблюдать в геометрических фигурах только непрерывную последовательность их элементов. Поскольку аксиомы самотождественного различия тут не соблюдаются, мы уже не сможем здесь отличать, например, прямую от кривой. А поскольку здесь не соблюдаются и аксиомы определенности, постольку в такой геометрии мы и вообще будем отвлекаться от точного вида фигур. Кто знает о дисциплинах геометрии, тот не может не догадаться, что тут мы сталкиваемся с так называемой топологией, или [analysis situs]. Примером топологического учения является известная теорема Эйлера о многогранниках. Оказывается, независимо от вида сомкнутого многогранника сумма его граней и вершин на два больше числа его ребер. Из этой теоремы получается много очень важных выводов, например что во всяком многограннике должны находиться или треугольные грани, или трехгранные углы, что не может существовать многогранник, всеми гранями которого служат многоугольники[43]с числом сторон больше пяти; например <…>. Эта теорема, таким образом, относится к любому виду многогранника, лишь бы это был именно многогранник. Известны еще задача Кёнигсберг–ских мостов, игра с додекаэдром Гамильтона и пр. построения, которые являются <…>. b) Далее можно присоединить к аксиомам подвижного покоя еще и аксиомы самотождественного различия. Мы, следовательно, оставляем инвариантной не только непрерывную последовательность фигуры, но и непрерывность, ненарушаемость ее вида, хотя все еще жертвуем аксиомами определенности, т. е. наша геометрическая фигура как бы вся целиком претерпевает разнообразные изменения. Так, когда мы видим предмет в перспективе, то сам по себе он нисколько не меняется ни по виду, ни в смысле порядка своих элементов, и тем не менее мы видим его в той или другой форме, несходной с видом, присущим ему как таковому. Этими свойствами фигур занимается проективная геометрия. Принцип вариации геометрических фигур понимается тут именно в моменте определенности бытия фигуры, но не в моменте вида или порядка элементов, из которых она состоит. Эти свойства фигур называют дескриптивными или проективными, противополагая их математическим свойствам фигуры, как это установили В. Фидлер и Ф. Блейн. Их можно назвать, если угодно, и «оптическими» свойствами фигур в отличие от топологических, которые удобно аналогизировать с мускульными ощущениями. c) Наконец, мы можем строить геометрию, исходя из всех трех групп аксиом едино–раздельности, т. е. мы можем не только соблюдать порядок элементов, ограничиваясь свойствами, инвариантными к любым непрерывным преобразованиям, или соблюдать дескриптивный вид фигуры, ограничиваясь свойствами, инвариантными к группе коллинеаций, но мы можем потребовать, чтобы соблюдалась и категория определенности бытия, т. е. чтобы фигура бралась в неизменности всех своих свойств, чтобы на фигуру была бы уже раз навсегда установлена одна перспективная точка зрения, а именно та, которая не зависит от точки проекции и вполне адекватно фиксирует царящие в ней отношения. Такая «адеквация», однако, все же есть условность. Она предполагает ту или иную метрическую операцию, которая принимается за данную. Мы тем или другим способом измеряем линию или отрезок и в соответствии с этим строим свои фигуры. Непрерывность, рассмотренная с точки зрения принципа определенности, есть не что иное, как принцип измеримости. Однако мы еще не знаем, что такое непрерывность, и потому покамест тут мы еще не строим цельной геометрии, а только обсуждаем общую базу для будущих принципов метрики. Общая метрическая геометрия поэтому есть то, что возникает на основе всех трех аксиом едино–раздель–ности, рассмотренных совокупно с принципом непрерывности. Однако в своем настоящем виде она может быть развита только на основе принципов конгруэнтности и параллельности, которые мы еще не вывели[44], и потому невозможно назвать метрикой получающуюся здесь геометрию в собственном смысле. Геометрия, возникающая на основе всех трех групп аксиом едино–раздель–ности, есть то, что называется синтетической геометрией. Это та геометрия, в которой равномерно и адекватно представлена логически целостная фигурность и которой недостает только метрического уточнения, чтобы стать обыкновенной элементарной геометрией. Таким образом, под синтетической геометрией здесь у нас понимается не то, что назвал этим именем Шаль, выпустивший под таким названием свой знаменитый труд по проективной геометрии. Во времена Шаля эта геометрия полемически противополагалась аналитической геометрии, слишком увлекавшейся отвлечением от всякой наглядности. Аналитической геометрии противопоставляли геометрию, основанную на чисто дескриптивном методе и не зависимую ни от какого вычисления. Однако если рассуждать строго логически, то проективная геометрия вовсе не есть полная противоположность аналитической, так как последняя предполагает не только то абстрактное понимание фигуры, какое свойственно проективной геометрии, и основывается на допущении коллинеаций, но предполагает именно полную и конкретную фигурность, хотя и выражает ее уравнениями и функциями. Аналитическая геометрия есть противоположность синтетической, если последнюю понимать не как проективную, а именно в нашем смысле. Таким образом, если не геометрически, то логически наше понимание этого термина более основательно, хотя свое реальное значение эта синтетическая геометрия получает только с присоединением принципов конгруэнтности и параллельности. До этого присоединения она отличается от проективной только исключительно всей перспективой[45]точки зрения на фигуру и сосредоточением на последней как на таковой. d) Необходимо заметить, что, в сущности, все три группы аксиом едино–раздельности действуют всегда и везде и речь может идти только о примате[46]той или другой группы. Ведь логическая связь, раз она однажды установлена, уже не может исчезнуть в абсолютном смысле. Она может только отступать, она может быть перекрыта и, стало быть, скрыта какими–нибудь внелогическими связями. Но так или иначе, латентно, она всегда как–то присутствует. И вот, можно сказать, что топология выдвигает на первый план аксиомы подвижного покоя, проективная геометрия—аксиомы самотождественного различия и синтетическая геометрия—аксиомы определенности — на общем фоне. 3. Прежде чем, однако, дать диалектические формулы вышевыведенным типам геометрического построения, мы внесем, во–первых, одно уточнение и, во–вторых, попробуем осознать относящийся сюда математический материал. а) Яснее всего и проще всего положение топологии. Тут невозможно сказать, что исключается коллинеация, т. е. исключаются аксиомы самотождественного различия. Присоединяем теперь к категории подвижного покоя категорию самотождественного различия и оставляем неприсоединенной категорию определенности. Что в этих целях мы получим последовательность точек вместе с сохранением коллинеации, это тоже ясно. Но нельзя ли конкретнее описать значение отсутствия категории определенности? Это сделать можно и нужно, и тут–то и начинается подлинная работа диалектики математической науки. А именно, в чем, собственно говоря, заключается абстрактность проективной геометрии в сравнении с обычной метрической? Проективная геометрия основана на перспективной точке зрения. Перспектива искажает фигуры; и вот — проективная геометрия синтезирует эти искажения. Она сохраняет коллинеацию как принцип, но она всячески требует коллинеарные связи, занимаясь в то же время только инвариантами в отношении всех этих деформаций. Что нужно для того, чтобы покончить[47]эти деформации и чтобы если они есть, то учитывать их как таковые, не отвлекаясь от их специфических свойств? Математика учит, что для этого надо принять во внимание существование бесконечно удаленной точки (или прямой) в качестве центра проекции. При таком центре все лучи зрения окажутся параллельными, и тем самым будет исключена всякая перспективная деформация фигуры. Следовательно, введение бесконечно удаленной точки внесет с собою определенность фигуры. Мы тут начинаем смотреть на фигуру с бесконечности, или, другими словами, начинаем смотреть на нее вне зависимости от расстояния. Проективная геометрия зависит от этого расстояния, хотя и отвлекается от вносимых им деформаций. Та же геометрия, которая построяется при помощи бесконечно удаленной точки, не зависит от этого, и потому изучаемые ею фигуры гораздо строже и конкретнее. Другими словами, категория определенности несет с собою исключение проективности и включение бесконечно удаленной точки. Пока не было определенности, пространственные расстояния вносили в фигуру свои деформации, а, чтобы отвлечься от них, проективной геометрии приходилось принимать во внимание только слишком абстрактные моменты фигуры. Теперь зависимость от пространственных расстояний исключается, и при этом точным диалектическим аналогом внесения бесконечно удаленной точки является внесение категории определенности (т. е. структурной определенности, фигурности) бытия. > b) Но, как известно, включение бесконечно удаленной точки превращает проективную геометрию не в метрическую, а только в аффинную. Аффинные преобразования отличаются от проективных соблюдением параллельности, т. е. соблюдением углов, в то время как проективные преобразования соблюдают только коллинеацию. Аффинная геометрия поэтому гораздо конкретнее, но все же инвариантом аффинитета является только уточнение параллельных отрезков. Аффинное преобразование есть, следовательно, равномерное растяжение или сжатие пространства по трем взаимно перпендикулярным направлениям. Поэтому геометрия, названная у нас выше метрической, или синтетической, вовсе не есть объединение трех основных категорий — подвижного покоя, самотождественного различия и определенности бытия. Таковым является пока только аффинная геометрия. Что же такое настоящая метрическая геометрия или, лучше сказать, настоящая синтетическая геометрия, т. е. та, в которой будут исключены даже те параллельные <…>, на которых стоит аффинная геометрия? c) Вопрос этот крайне важен, и должна быть [в нем ] абсолютная диалектическая точность и ясность. Если мы обратимся к математике, то нас поразит ответ, даваемый ею на вопрос о переходе аффинной геометрии в метрическую. Этот ответ полон глубочайшей тайны; и, по–моему, из математиков еще никто не проанализировал его философски и логически, хотя Штаудт, Клейн и др. достигли полной ясности представления относительно математического значения этого ответа. Ответ этот таков. Известно, что всякий круг пересекается с бесконечно удаленной прямой в одних и тех же двух постоянных мнимых точках (т. н. циклических точках) и, — соответственно, шар пересекается с бесконечно удаленной плоскостью по одному и тому же мнимому коническому сечению, кругу. Необходимость двух мнимых точек для всякой кривой второго порядка явствует аналитически из того, что пересечение двух кривых второго порядка дает четыре корня двух квадратных уравнений, в то время как вещественно эти кривые пересекаются только в двух точках. И вот оказывается: если присоединить к геометрической системе не только бесконечно удаленную точку (или плоскость), но и упомянутый мнимый круг, то из проективной геометрии вместо аффинной мы получаем метрическую. Этот ответ потрясает; и невозможно успокоиться, покамест не дашь ему достаточной философской интерпретации. Ведь речь ни больше ни меньше как о том, различать ли нам квадрат и прямоугольник или не различать. Ведь аффинная геометрия не различает этого. И вот оказывается: для того, чтобы иметь возможность различать квадрат и прямоугольник, надо ввести существование мнимого круга, по которому всякий вещественный шар пересекается с бесконечно удаленной плоскостью. Это учение производит настоящее мистическое впечатление, как бы ясно мы ни представляли себе, что квадратное уравнение имеет два корня, а два квадратных уравнения имеют четыре корня, что из них два корня мнимые, и т. д. и т. д. Попробуем разобраться здесь философски и диалектически, и это будет первая диалектика перехода от аффинности к метрике, первая — за все время существования и геометрии, и диалектики. d) Нам надо, чтобы квадрат отличался от прямоугольника и круг от эллипса. Как связаны между собой квадрат и прямоугольник? Прямоугольник есть параллельная проекция квадрата. Следовательно, наш вопрос стоит так: как возможна проекция? Отвлекаясь от проек–тических (.··)> мы должны сказать, что проекция есть отображение первообраза на его инобытие. Что для этого нужно? Для этого 1) нужно, чтобы кроме первообраза было и его инобытие. Для этого 2) нужно, чтобы инобытие приняло на себя первообраз. Для этого 3) нужно, чтобы принятие на себя первообраза инобытием было не чисто образным (ибо тогда мы остались бы в сфере (…) первообраза) и не чисто инобытийным (ибо тогда мы остались бы в сфере только инобытия), но чтобы оно было именно отобразительным понятием, отображением. Что же это значит — принять на себя образ, но принять не вещественно, а образно же? Первообраз и его инобытие встречаются, но эта встреча — не вещественная, а чисто образная, смысловая. Выбирая выражения, более близкие к математике, надо сказать, что первообраз и его инобытие пересекаются, но пересекаются не вещественно, а мнимо. Позже (§ [105—107]) мы разовьем специальное учение о мнимых величинах как величинах именно выразительной (в частности, и отобразительной) структуры. Итак, отличать квадрат от прямоугольника — значит отличать проектирующее от проектируемого, а это значит признавать существование проекции. Признавать существование проекции — значит признавать существование пересечения двух вещественных фигур в мнимых точках. Все поверхности второго порядка пересекают друг друга в мнимых точках, образующих особый мнимый круг. Поэтому если есть такой мнимый круг, то проекция квадрата в виде прямоугольника возможна и, значит, квадрат отличен от прямоугольника. Если же этого мнимого круга нет, то никакая проекция вообще невозможна и поэтому, берем ли мы квадрат, берем ли прямоугольник, пред нами в обоих случаях нечто совершенно тождественное. Вот, следовательно, в чем удивительный секрет этого мнимого сферического круга, дающего устойчивость аффинному построению и превращающего его в построение метрическое. Это есть секрет выразительных функций числового бытия. Но тут необходимо еще одно разъяснение. е) Для отражения первообраза должно быть инобытие. Если роль первообраза в нашей системе играет само число, (…) числа, конструированный при помощи принципов едино–раздельности, то инобытием этого первообраза является, очевидно, становление, сфера принципа непрерывности. Следовательно, для конструкции метрической геометрии мы выше использовали не только категории самотождественного различия, подвижного покоя и определенности бытия, но и категорию становления. Так оно и должно быть, потому что становление гораздо ближе подходит к метрической операции, чем дескриптивные и чисто смысловые категории едино–раздель–ности. Безусловно, становление входило и в нашу конструкцию топологии, проективной и аффинной геометрии, так как на данной ступени нашей диалектической системы мы обозреваем судьбы становления в связи с отражающимися на нем категориями едино–раздельности. Но во всех этих геометриях становление явно играет второстепенную роль. Оно здесь только обусловливает собою протекание тех преобразований, которыми как таковыми как раз данные типы геометрии и не занимаются и в отношении которых являются[48]только их инвариантами. Теперь же мы выдвигаем становление на первый план, рассматривая его вполне наравне с категориями едино–раздельности, т. е. все идеальные категории едино–раздельности действительно оказываются здесь целиком воплощенными в стихии становления, и последнее действительно рассматривается с точки зрения этих категорий полностью и целиком. Что же новое дает нам эта позиция? Стихия становления может образовать с числовым первообразом абсолютное тождество. Это бывает тогда, когда оно как таковое, в самой своей субстанции, перестает существовать. В нашем случае мы не имеем такого тождества. Становление (инобытие) остается существовать само по себе, и его единственная функция здесь — отображать первообраз. Синтез числового первообраза и его инобытия происходит здесь поэтому не в субстанциональном отношении, а только в смысловом отношении. Здесь первообраз только указывает на свое отображение в инобытии, а инобытие своим отображением указывает на первообраз. Геометрический смысл возможности этого взаимоотображения (или взаимопроектирования) и есть наличие измерения фигур, т. е. их метрическая структура. И значит, только здесь мы можем говорить о синтетической геометрии в указанном смысле, а то, что мы называли выше этим именем, есть, стало быть, только база для настоящей синтетической геометрии. f) Мы можем сказать еще и по–иному, и это[49]может стать резюме нашего исследования. Покамест была у нас только проективная точка зрения, мы — согласно той категории, которая управляет этой последней, — могли только различать и отождествлять геометрические фигуры и их элементы, т. е. точку понимать как точку, прямую как прямую, плоскость как плоскость <…>, погружая все прочее в хаос становления. Когда мы захотели внести сюда еще и критерий определенного бытия, то, поскольку определенность в геометрии была для нас фигурностью (§ [55 ]), мы должны были заговорить о взаимных отношениях фигур (и их элементов), а не просто только различать и отождествлять их как таковые. Фиксировать же взаимное отношение фигур—значит оперировать с ними как с конечными величинами. Чисто проективная точка зрения выше разделения на конечное и бесконечное. Аффинная же геометрия требует это разделение; отсюда и введение[50]бесконечно удаленных элементов. Следовательно, если нам нужно рассмотреть становление в свете едино–раздельности, то мы погружаем всю отвлеченную фигурность, выведенную раньше в качестве чистых категорий, в стихию категорий и — таким способом получаем разные виды становления в свете едино–раздельности. При этом каждый раз берутся именно абстрактные категории едино–раздельности, а не их наглядная воплощенность, как того и требует сама едино–раздельность, которая есть, как мы знаем, начало отвлеченное, идеальное. Сохраняя подвижной покой как отвлеченную категорию, имеем топологию, где все деформируется, кроме последовательности элементов, а сама она понимается — в наглядном смысле — как угодно. Берем самотождественное различие как отвлеченную категорию, оставляя все прочее в становлении, т. е. в сплошной деформации, — получаем проективную геометрию, где сохраняется различие элементов, но—лишь как отвлеченных понятий (прямая везде остается как прямая, т. е. как прямая вообще[51]; и не важно, какая именно это будет прямая). Наконец, если мы вводим наличное бытие как категорию и смотрим, что получается при рассмотрении становления в его свете, то мы замечаем, что тут образуется определенность, оформлен–ность, конечность, но пока тоже как принцип, потому что для аффинной геометрии важна не [52]цельная и конкретная фигура, но лишь ее конечная определенность вообще. В этом и состоит тайна параллелизма, той, в принципе, конечной определенности фигуры, когда она рассматривается не в виде отвлеченной категории просто, но в виде непрерывного становления, — [рассмотренного с точки зрения отвлеченной категории конечной определенности. Таким же отвлеченным принципом, в свете которого рассматривается непрерывное становление, может явиться, наконец, и само становление. Но последнее тут определяет собою уже не просто конечную фигурность, но и отличие одной конечной фигурности от другой (как на стадии проективной геометрии было мало фигуры вообще, а нужно было отличие одной фигуры от другой), потому что, увлекая конечную фигуру в свою стихию, оно тем самым меняет ее на ряд других конечных фигур. Но как возможен этот бесконечный ряд конечных фигур? Он возможен только как нечто единое. Этим единым является, конечно, уже само становление. Однако такое единое есть только порожденное единое, а не самая структура единого. Структура же как единое, т. е. та структура, которая характеризует и каждую отдельную конечную фигурность и есть нечто общее, может быть только мыслимой, а не вещественной. «Чтойность» вещи, взятая как принцип, может быть только мнимой. Та общая индивидуальность, которая определяет собою во всех индивидуумах самое конкретное в них и в то же время есть для них общее, эта индивидуальность есть мнимое. Отсюда — необходимость введения мнимого сферического круга, о котором шла речь выше. Этот круг образуется путем пересечения любого конечного шара с бесконечно удаленной плоскостью. Но является заблуждением думать, что он, равно как и циклические точки, находится гоже на бесконечном расстоянии. Тогда именно потонуло бы все различие конечных кругов одного от другого. Так как этих конечных кругов бесконечное количество, то они в самом разнообразном смысле пересекаются в бесконечно удаленной плоскости. Поэтому циклические точки и мнимый сферический круг, чтобы обеспечить индивидуальную конкретность каждой конкретной фигуры, должны быть не на бесконечном расстоянии, а только на неопределенном. В самом деле, находя уравнение круга в однородных координатах <(ξ — ατ)2 + (η — bx)2 — r2x2 = 0)> и находя, что пересечение этого круга с бесконечно удаленной прямой <τ = 0> определяется уравнением <ξ2 + η2 = 0,> мы определяем расстояние циклических точек так:
что и есть неопределенность. Так же неопределенно и расстояние циклических точек и от всякой другой конечной точки. На это тонко обратил внимание Ф. Клейн. g) Наконец, дадим кратчайшее резюме всем рассмотренным типам геометрического построения. Именно, обратим внимание на то, что в топологии имеется в виду не сама фигура, а лишь ее непрерывное становление, и притом становление, которое не позже становящегося, а еще раньше его (поскольку никакая определенная фигура тут еще не фиксируется). Но становление принципа, взятое до самого принципа, есть перво–принцип. Поэтому мы и можем сказать так. Топология есть наука о пространственном становлении, в котором не становится (инвариантна группе преобразований) только фигура как перво–принцип. Проективная геометрия есть наука о пространственном становлении, в котором не становится только фигура как отвлеченный принцип (как общее понятие). Аффинная геометрия — то же, когда не становится только фигура как определенный принцип, т. е. как конечная фигурность. Общеметрическая геометрия—то же, когда не становится фигура как индивидуально–конечная фигурность. Все это есть, таким образом, разная степень диалектической зрелости становления, зависящая от того, какие и в каких размерах категории воплощаются в этом становлении. 4. а) В качестве добавления скажем еще, что, поскольку принцип становления вносит возможность разнообразных комбинаций логически выведенных аксиом независимо от их чисто логической взаимосвязи (включая и саму непрерывность), вполне мыслимо конструирование геометрии и без всякого принципа непрерывности. Гильберт построил т. н. неархимедову геометрию, содержащую в себе все аксиомы, как раз за исключением аксиомы непрерывности[53]. И тем же самым занимался раньше его еще Веронезе[54], объединявший неархимедову арифметику и геометрию с теорией трансфинитных чисел Кантора. Хотя подобное построение по существу своему еще более оригинально и неожиданно, чем открытие Лобачевского (так как у последнего изменена только метрика, а [в] неархимедовой же геометрии нарушен самый континуум), все же формально и философски тут все совершенно обычно, и неархимедова геометрия — только одна из многочисленных диалектических теорий[55]вообще. b) Все предыдущие установки являются только принципом для реального построения диалектики геометрии, которое мы даем в дальнейшем. Там все эти аксиоматические принципы должны вырасти в зрелую систему. Здесь же от этого, конечно, необходимо воздерживаться, и может идти речь только о самых принципах. Это положение дела и можно зафиксировать следующим образом. I. Становление конструируется — a) по типу подвижного покоя (т. е. порядка следования элементов), остающегося неизменным в условиях бесконечного становления прочих категорий (iтопология: любые свойства геометрических фигур инвариантны в отношении с любым непрерывным преобразованием); b) по типу подвижного покоя (порядка следования) и самотождественного различия (взаимопринадлежности, сопряжения элементов), остающихся неизменными в условиях неопределенного становления категории определенности {проективная геометрия: любые свойства фигуры инвариантны в отношении к группе коллинеаций); c) по типу подвижного покоя, самотождественного различия и определенности бытия, остающихся неизменными в условиях неопределенного функционирования самого становления, т. е. в условиях, когда категория становления еще не положена как самостоятельная {аффинная геометрия: любые свойства фигуры инвариантны к параллельному проектированию). II. Становление конструируется по типу трех указанных основных категорий едино–раздельности с сохранением собственного принципа как инобытийного и потому с превращением его в то, чем измеряется фигура {метрическая геометрия: любое свойство фигуры инвариантно к абсолютно–измерительным операциям). Следовательно, фиксируется наиобщая и наиабстрактная метрика — та, которая гипостазирует идеальную фигурность во всей ее целостности, минуя те ее искажения, которые возникают от неполного числа категорий едино–раздельности. Эта метрика, однако, может быть и иной (она возникает уже в связи с принципами конгруэнтности и параллельности). III. Становление конструируется по типу трех указанных основных категорий едино–раздельности, но без сохранения своего собственного принципа и как самостоятельного, и как подчиненного; это становление, нарушающее самый принцип непрерывности, становление непрерывности (неархимедова геометрия). В таком виде можно было бы представить аксиоматическую диалектику основных типов геометрических построений, основанную на едино–раздельности и непрерывности. 5. Систематический обзор геометрии с точки зрения диалектики покажет нам, вообще, весьма большое разнообразие в комбинировании, а также и в формах развития основных аксиом. Мы, например, ничего не сказали о геометрии без всякой категории подвижного покоя. Однако вполне возможна геометрия, в которой отсутствуют аксиомы подвижного покоя. Таковой является геометрия Римана, являющаяся не чем иным, как сферической геометрией, а на сфере о трех диаметрах в одной диаметральной плоскости совершенно нельзя сказать, какой из них находится между двумя другими. Идея порядка здесь не имеет смысла, как неприменима она еще и к мнимым точкам (последние вообще не мыслятся размещенными в пространстве). Так же, развивая начала проективной геометрии, мы столкнулись бы, например, с теоремой Дезарга. Если прямые, соединяющие попарно вершины двух треугольников, расположенных в двух плоскостях и не имеющих общей вершины, сходятся в одной точке, то соответственные стороны этих треугольников пересекаются в грех точках, расположенных на одной прямой, а именно на прямой пересечения плоскостей треугольников. Иначе можно было бы сказать,, что если два треугольника, принадлежащие различным плоскостям, перспективны, то они также и соответственны. Эту теорему можно доказать, исходя из аксиомы самотождественного различия плоскости и из аксиомы конгруэнтности на плоскости (категорию конгруэнтности мы пока еще не вывели, см. ниже, §66.4). Однако ее можно доказать и на основании других аксиом самотождественного различия, но только применяя их не к плоскости, а к пространству. Гильберт же доказал теорему Дезарга при помощи только одних проективных аксиом плоскости, т. е. при помощи наших аксиом самотождественного различия, притом только плоскостных. Для этого, конечно, необходимо соответствующим образом расширить понятия точки, прямой и плоскости.[56]Но тогда возможна недезаргова геометрия, наглядным примером которой Пуанкаре приводит луч, идущий по прямой через эллипс, но изгибающийся внутри его в дугу и выходящий из него тоже по прямой. Так или иначе, но Штаудт доказал теорему Дезарга исключительно лишь при помощи «аксиом сочетания», примененных к пространству. А этот факт и значит, что проективная геометрия вырастает прежде всего на категории самотождественного различия. Точный анализ подобных конструкций уже далеко выходит за пределы простой аксиоматики. 6. Что касается теории множеств, то предыдущая геометрическая дедукция типов становления с точки зрения категорий едино–раздельности, очевидно, должна дать руководящий принцип и для соответствующей дедукции моментов теоретико–множественной области. a) Весьма наглядным делается, прежде всего, место теоретико–множественной топологии в системе аксиоматических установок вообще. Именно, под топологией понимается наука, изучающая те свойства множеств, которые сохраняются в условиях взаимно–непрерывного соответствия. Что в центре внимания здесь стадия непрерывности, это ясно; и что в условиях этой непрерывности мы соблюдаем только последовательность элементов (= категорий подвижного покоя), отвлекаясь от всякой фигурности, это тоже ясно. Что же касается аффинных и проективных [множеств] (в смысле аналогии с проективной геометрией), то здесь также, по–видимому, принципиально возможны соответствующие построения. Особо поговорим о метрических множествах, т. е. о понятии меры в применении к теории множеств. b) Мы уже знаем (§ [ ]), что понятие меры возникает только в связи с категорией становления, и ниже, в § 66.2, мы этот вопрос развернем диалектически по поводу аксиом конгруэнтности. Сейчас нам важен тут только один принцип: становление структуры, если оно действует как самостоятельный принцип, застилает самую структуру новым слоем, который, будучи сравниваем с самой структурой, является ее измерением, или мерой. Математики поступают в определении меры весьма просто и наивно, за что, впрочем, в данном случае можно только похвалить. Можно было бы говорить и еще проще, не прибегая к нагромождению ненужных обозначений (к тому же обязательно греческими буквами) и пр. Математики рассуждают так[57]. Мера множеств, лежащих на данном сегменте, есть не что иное, как более общее понятие длины отрезков этого сегмента. Пусть какое–нибудь множество F входит в S. Так как обычно берется интервал [0,1 ], то мера множества μ(F) равняется 1—мера (S— F), т. е. мера F + мера (S—F) = мере S=1. Мера μ(F) есть нижняя грань множества всех мер μ(G), т. е. всех мер любой «области» G, которая содержит F. Мера этой области μ(G) есть, наоборот, верхняя грань всех мер любого замкнутого множества F, лежащего в этой области. Если взять произвольное множество G⊃ Ε, то нижнюю грань множества всех неотрицательных чисел, изображающих меру области можно назвать внешней мерой множества μ*(E) a верхнюю грань всех неотрицательных чисел, дающих меру для F⊂ E, можно назвать его внутренней мерой μ*(E). Когда внутренняя мера множества равняется его внешней мере, то множество измеримо, и данное число его внутренней или внешней меры есть его мера вообще. Попросту говоря, если я буду измерять данный объем изнутри и его же извне и оба размера измерения совпадут, то это значит, что данный объем действительно измерим и существует некая определенная количественная величина, которая его изображает (или измеряет). Ясно видно, что измеримость множества связывается именно с возможностью его перекрытия, т. е. покрытия новым слоем, т. е. с введением момента становления. Отбросим всякое становление и возьмем только голую структурность множества, т. е. едино–раздельность актов числового полагания (признавая только такое становление, которое абсолютно имманентно самой отвлеченной структуре множества и еще не выделено в особую категориальную положенность). Тогда мы получим в качестве идеального образца просто натуральный ряд чисел и то, что называется счетным множеством (т. е. множество, эквивалентное множеству всех натуральных чисел). Какова будет мера всякого счетного множества? Его мера = 0; и это ясно само собой, хотя математики делают вид, что они это «доказывают». Это ясно так же, как и то, что мера множества из одной точки равняется нулю. Возьмем отрезок [0; 1 ] и на нем множество всех отрицательных чисел. Какова мера этого множества? Ясно, что мера эта равна единице. Вообще говоря, всякое замкнутое множество (т. е. содержащее в себе все свои предельные точки) и всякое совершенное множество (т. е. содержащее в себе все свои предельные точки и никаких других), если мера его будет больше нуля, всегда будет несчетно. Употребляя совсем обывательскую терминологию (а она всегда прекрасна, если правильно отражает интуитивную картину жизни), можно сказать так. Когда есть просто идеальная структура, она несжимаема и нера–сширяема и плотность ее дана раз навсегда. Когда дается ее инобытийно становящийся аналог, то этот аналог можно деформировать как угодно. На то он и есть инобытие, становление. И вот, я могу эти точки, из которых состоит множество и о взаимном расстоянии которых раньше не было речи (или шла речь в переносном смысле слова), располагать на том или ином расстоянии одна от другой, располагать их гуще или реже. Вот эта плотность распределения и есть мера. Ясно, что различия «плотности» предполагают введение принципа инобытия в абсолютную «плотность» (или, если угодно, абсолютную разреженность[58]) абстрактного, идеального множества. Но инобытие в сравнении с абсолютной различенностью структуры есть некая неразличимость; неразличимость же есть сплоченность, сплоченность есть континуум, г. е. несчетное множество. Следовательно, наличие <…> меры, превышающей нуль, уже предполагает несчетное множество. b) Измеримость множества есть, таким образом, результат его непрерывности. К этому сводятся основные положения теории измеримых множеств, которые, по Н. Лузину[59], звучат так. Во всяком измеримом множестве Μ меры μ, μ>0 содержится такое совершенное множество Ρ, что mes Ρ>μ — ε, где ε>0, малое как угодно. Всякое измеримое множество Μ меры, большей нуля, есть сумма конечного, или счетного, числа совершенных множеств Pi, Pi, … не имеющих попарно общих точек, и нуль–множеств [а ]N. Измеримое множество обладает точками плотности и точками сгущения. Точка а есть точка плотности множества, если отношение
где δ — интервал, содержащий а внутри, стремится к 1, когда δ стремится к нулю. Та же самая точка есть точка разрежения, если это отношение стремится к нулю вместе с δ. Если mes М= 1, всякая точка области [0, 1 ] есть точка плотности, и, если mes М = 0, всякая точка есть точка разрежения. Обращаясь к геометрической аналогии, мы находим, что никакое измеримое множество Μ меры 1 не может быть равномерно расположенным на области [0, 1 ]. Тут всегда будет, по крайней мере, одна точка плотности и одна точка разрежения, т. е. на этой области имеются два интервала равной длины и неперекрывающиеся, из которых один насыщен точками Μ, а другой пустует или беден ими[60]. Таким образом, всякое измеримое множество меры не 0 и не 1 не будет равномерно покрывать область [0, 1 ], но «будет лежать на ней как бы сгустками, будучи слишком уплотненным в одних частях этой области и слишком разреженным в других». Соответственно надо говорить и о последовательности измеримых функций (такова теорема Д. Ф. Егорова о наличии совершенного множества с равномерной сходимостью последовательности функций) и вообще об измеримых функциях. Для того, чтобы функция /(х), конечная почти всюду на [0, 1 ], была измеримой функцией, необходимо и достаточно, чтобы, как бы мало ни было положительное число ε, существовало на [0, 1 ] совершенное множество Р, обладающее свойствами: 1. f(x) непрерывна на Р, 2. mes Р> 1 — ε. Совершенно ясно, что во всех этих представлениях меры мы все время имеем дело с непрерывностью, т. е. со становлением, но только это не просто становление (иначе у нас получился бы теоретико–множественный континуум), но становление, рассмотренное с точки зрения едино–раздельности, т. е. измеряемое становление. с) Необходимо также заметить, что здесь мы, как и соответственно выше, в § 2с, в отношении геометрии пришли только к самому общему понятию меры. Собственно говоря, если строго придерживаться рамок нашей общей категории становления, которую мы сейчас изучаем, мы можем утверждать сейчас только то, что существует измеримость множества вообще и больше ничего. Представление множества с точки зрения едино–раздельности, когда мы имеем в качестве самой сложной категории только категорию типа, было совершенно лишено всякого элемента измеримости, или, иначе, мера чистого и основного множества (счетного множества) — нуль. Теперь же мы приходим к тому выводу, что измеримость может быть и не только нулевой, — только об этом и говорит нам категория становления. Если же мы захотели бы исследовать разные типы измеримости, то это было бы равносильно исследованию разных типов становления, т. е. тут нужен был бы выход за пределы самой категории становления. Но это в полной мере совершится только после перехода нашего становления в ставшее и далее, наконец, в выразительную форму. 7. Наконец, бросим взгляд на теорию вероятностей в смысле того, как наличная в ней сфера становления испытывает на себе воздействие аксиом едино–раздельности. Становление, взятое само по себе, есть процесс, последовательность. Когда мы оформляли его при помощи арифметических действий, мы получали ту или иную последовательность чисел. Когда это оформление совершалось у нас при помощи геометрических построений или теоретико–множественных операций, мы получали последовательность тех или иных вариаций пространства или множеств. В теории вероятностей мы тоже должны получить такую последовательность, которая бы свидетельствовала о размеренности ее с точки зрения тех или иных теоретико–вероятностных операций. Процессуаль–ность вероятностей должна свидетельствовать здесь о некоем постоянном законе, неизменном в данной процессуальное. В арифметической последовательности неизменно то или иное арифметическое действие (напр., умножение на какое–нибудь число в неизменной[61]прогрессии); в геометрической последовательности преобразований он имел также тот или иной инвариант. 1де же этот неизменный закон тех или иных операций в последовательности вероятностной? Здесь мы могли бы говорить по–разному. Дело в том, что всю эту сферу «взаимодействия аксиом едино–раздельности и аксиом непрерывности» можно понимать настолько широко, что ею покроется и вся категория наличного бытия, к которой мы еще не перешли. Этого расширения, однако, мы намеренно не производим, так как в указанной сфере «взаимодействия» есть свой вполне самостоятельный диалектический момент. С этой точки зрения момент индивидуальности мы еще не будем выделять в самостоятельный пункт, как это случится в категории наличного бытия, а будем брать его в его максимальной слитности с самой процессуальностью. Таким <…> теории вероятностей является, прежде всего, т. н. закон больших чисел. Его основная идея заключается в том, что с увеличением числа случайных событий, с которым связан данный факт, устанавливается и вероятность факта, сколь угодно близкая к достоверности. Более того, этот закон формулируется с помощью понятия математического ожидания. Но мы не будем входить в этот вопрос, равно как и в анализ знаменитого неравенства Чебышева и его следствий. Непосредственно видно, что принцип закона больших чисел иначе конструируется, чем выдвинутые выше математические факты в аналитической сфере «взаимодействия». Но остается самое общее сходство — категория становления в ее сформированное™ при помощи категорий едино–раздельности. Едино–раздельная последовательность массы случайных фактов ведет к установлению специфического процесса, а именно становящегося перехода вероятности в достоверность. В типах геометрии, рассмотренных выше в п[унктах] 2—4, инвариантность дана в процессуальном ряду сразу, здесь же она — в виде достоверности — только еще устанавливается. Тем не менее и здесь поток самого становления вероятности обусловлен определенной едино–раздельной системой (ростом количества «случаев»); и общее место закона больших чисел, несмотря на отдаленность с учением о преобразованиях в арифметике и геометрии, в основе все же сохраняет с ним единство: это становление, рассмотренное с точки зрения нестановящегося. Понятно также и то, что с законом больших чисел впервые появляется возможность реального измерения вероятностной области вообще, в связи со статистическими вероятностями, средними величинами, дисперсией и пр. 8. а) Остается сделать одно общее замечание о всей рассматриваемой в последних двух π [унктах ] сфере «взаимодействия», и—мы совсем покинем категорию становления. А именно, если едино–раздельносгь в свете становления еще рисует пока только саму же едино–раздель–ность или само становление, то относительно становления в свете едино–раздельности может возникнуть вопрос: не есть ли это попросту ставшее? Ведь едино–раздельность вносит в становление некоторую запруду и лишает его характера абсолютной текучести. Не есть ли это само ставшее и не перешли ли мы здесь уже за пределы аксиом становления? Нет, мы еще не перешли к ставшему в собственном смысле, хотя при более суммарном изложении эти тонкости и не имело бы смысла проводить. Ставшее есть остановившееся ставшее, а у нас становление еще не остановилось. Это значит, что мы еще не можем сравнивать результаты процессов становления между собою, но должны находиться внутри становления. Устойчивые моменты, включаемые в становление едино–раздельной сферой, не касаются самого становления вообще, самого принципа становления, но только содержания этого становления. Поэтому в арифметике мы получили возможность модифицировать и комбинировать действия, превращая их в ге или иные преобразования, но мы еще [на] этой стадии не смогли сравнить результаты действий с точки зрения действий как таковых, с точки зрения принципа действий. Мы, напр., еще не знаем коммутативность сложения или умножения. Нет сомнения, что применение операции с невыясненным законом коммутативности есть нечто весьма недостаточное и незрелое. Но это значит только то, что одна категория становления не может обеспечить полноты идеи арифметической операции и что необходимо привлечение дальнейшего. Также и полученные нами типы геометрии предполагают бесконечное вариирование одних элементов и инвариантность других, но ясно, что ограничение этого вариирования и превращение его из становления в ставшее должно привести еще к новым построениям, которые мы и получаем в связи с категорией конгруэнтности. Конгруэнтность превратит и полученные нами отвлеченные инвариантные элементы в структурные принципы, так что не этот инвариант будет рассматриваться на фоне становления (напр., как аффинность рассматривается на фоне параллельных преобразований), но он будет рассматриваться сам по себе в сравнении с другими такими же геометрическими фактами, в результате чего мы сможем накладывать их один на другой и судить об их конгруэнтности, подобии и пр. Все это возможно только потому, что геометрическая фигура превратится тут у нас в ставшее, в бытие наличное. К этому мы сейчас и обратимся. b) Для целостности диалектической картины, однако, мы приведем в заключение ту нашу универсальную схематику в рассматриваемой области, которую мы должны были бы привести с самого начала, но которую не приводим ради избежания различных нагромождений, заменивши ее сферой «взаимодействия» двух рядов <…>. Именно, в отношении всей сферы становления необходимо различать наши пять основных диалектических ступеней. То, что мы выше (§ [59]) изобразили как непрерывность вообще, это будет перво–принципом аксиоматики становления. То, что выше мы формулировали как аксиому едино–раздельности, рассмотренную в свете аксиом становления, есть принцип аксиоматики становления. Само становление в свете едино–раздельности необходимо оказывается становлением этой аксиоматики становления. В качестве ставшего, если брать арифметику, очевидно, мы должны выдвинуть разные преобразования, равно как и под выразительной формой[62]. Ведь арифметическое становление вообще есть только арифметическая операция, она есть именно принцип становления, и, если перво–принцип арифметического становления есть непрерывность, все остальное, — т. е. и становление принципа, и его ставшее, и его выразительная форма — есть та или иная последовательность операций, или преобразований. Соответственно, в геометрии[63]после непрерывности как перво–принципа и после геометрического построения как принципа мы имеем только разные типы геометрических структур. Становление, ставшее и выразительная форма этих структурных построений дает нам в этой развитой установке для становления — топологию, проективную и аффинную геометрию, для ставшего—геометрию подобных преобразований и только для выразительной формы — полную метрическую геометрию (хотя все еще без деталей, которые придут позже). Все эти виды геометрий в переводе на язык арифметики и есть не что иное, как та или иная последовательность преобразований. Наконец, ту же последовательность операций мы должны были бы проводить и в теоретико–множественной, и в теоретико–вероятностной области. Но мы избежали этих слишком (…) для аксиоматики деталей, введя просто сферу взаимодействия аксиом едино–раздельности и становления и приведя для теоретико–множественной последовательности указание на измеримость, а для теоретико–вероятностной — указание на закон больших чисел.
d) АКСИОМА СТАВШЕГО ЧИСЛА (ИЛИ КОНГРУЭНТНОСТИ) § 64. Принцип ставшего числового бытия как принцип конгруэнтности.
Если мы вспомним, что выше говорилось о категории ставшего, или, что то же, о категории «наличного бытия» (§ 21), то применение ее в области аксиоматики влечет за собою очень важное построение, которое гоже еще пе нашло в математике и в математической философии настоящего расчленения. 1. Что становление требует ставшего, что эти категории одна другую предполагают, об этом не будем долго разговаривать. Все сомнения, которые возможны в этом вопросе, рушатся уже от простейшей установки: если есть становление, то есть и ставшее. Ибо становиться может только нечто. Но это нечто не то, которое было до становления, и потому если мы становление противопоставим чисто идеальной структуре, бывшей еще до становления, то тем самым мы вернемся назад, и ни на шаг диалектический процесс от этого вперед не продвинется, хотя идеальное и противостоит становлению как бытию вне–идеальному, алогическому. Следовательно, дальнейшее движение мысли получится только тогда, когда мы становлению противопоставим такое нечто, которое хотя и не будет самим становлением, но как–то его в себя вместит как подчиненный момент. Должно возникнуть такое нестановящееся, которое вместило в себя всю стихию становления и которое уже не просто идеально неподвижно, но неподвижно в смысле реальном, неподвижно в смысле становления, в смысле результата становления. А это и есть ставшее. Ставшее — то, что стало, т. е. остановилось; следовательно, оно — неподвижно. Однако эта неподвижность в отличие от идеально–смысловой неподвижности есть неподвижность как результат становления. Поэтому ставшее есть синтез идеальной неподвижности и вне–идеального становления. Другими словами, в ставшем мы различаем то, что стало после становления, и то, что было до становления, но оказалось втянутым в его алогический процесс. Эти два момента тут и отождествляются. Сначала мы имеем просто идеальную структуру, взятую как такая. Потом она вовлекается в стихию становления. Мы не теряем ее из глаз; и, через какие бы этапы становления она ни проходила, мы видим все ту же самую идеальную структуру, узнаем ее, несмотря на ее самоотчуждение в инобытийной алогичности. Разумеется, с ней не может не происходить тех или иных изменений, потому что иначе становление было бы пустой и незначащей категорией и не для чего было бы и вводить ее в диалектику. Значит, идеальная структура, вовлеченная в процесс становления и остающаяся самой собою (ибо мы ее везде узнаем), в то же время сплошь меняется, перекрывается новым слоем. И вот, допустим, она остановилась, ее становление закончилось. И что же? Оказывается, и в этом покойном состоянии мы все еще видим не что иное, как именно ее же, узнаем ее, фиксируем ее так же, как и до становления; но тут же мы видим и то новое, что наросло на ней, фиксируем результат пребывания в становлении, рассматриваем то инобытие, которым она перекрылась и с которым она теперь отождествилась. И она обязательно отождествилась сама с собой, со своим наросшим инобытием. Если бы идеальное не отождествлялось с реальным в процессе становления, то в реальном становлении мы не узнали бы становящегося идеального. И получилось бы, что идеальное вовсе не становится, а пребывает в своей идеальной сфере как абсолютно изолированная неподвижность; о реальном же становящемся вовсе нельзя было бы сказать, что оно есть нечто (так как «нечто» само по себе есть как раз нестановящийся идеальный предмет), т. е. о реальном становящемся совсем ничего нельзя было бы сказать. Все, сказанное о реальном становлении, уже есть нечто, и нечто — не становится, оно есть просто смысл и больше ничего. Итак, идеальное в процессе своего становления отождествляется с реальным. Когда же процесс окончился и становление превратилось в ставшее, то и в ставшем мы находим 1) прежнее абсолютно то же самое идеальное, 2) результат становящегося процесса в виде некоего инобытийного перекрытия первоначального идеального и 3) отождествление того и другого в некую цельную и неделимую предметность. 2. Однако и эта картина отождествления еще не полна. Когда строилась диалектика идеального, то идеальное и было самим бытием. Идеальное, рассматриваемое само по себе, не нуждалось ни в каком носительстве, ни в какой иноприродной к себе субстанции. Идеальное и есть само для себя субстанция. Но когда зашла речь о становлении, идеальное уже потеряло свою собственную субстанцию. Оно ведь стало осуществляться и воплощаться заново, и его субстанцией оказалось не оно же само, но уже становящееся инобытие, сама стихия становления. Идеальное теперь оказывается несомым при помощи реального; реальное оказывается его новой субстанцией и телом; ведущим оказалось реальное, становящееся инобытие, а идеальное — только пассивно плывущим по этим неугомонным волнам становления. Следовательно, в ставшем мыслится два плана. Один — это то реальное, алогическое, инобытийное, что и есть самая субстанция становления. Мы не ошибемся, если назовем этот план протяжением, не вкладывая в этот термин только одно геометрическое содержание. Ведь протяженность и есть алогически (т. е. нерасчленен–но) ставшее, результат алогического становления. Еще неизвестно, что именно стало, т. е. еще нет никакой идеальной структуры, которая именно становилась, а есть только самая стихия становления, достигшая ступени ставшего, т. е. остановившаяся. Другой план ставшего — это то идеальное, смысловое, расчлененное, что было вовлечено в процесс становления и что, несмотря ни на какие инобытийно–становящиеся судьбы, мы все же узнали в окончательном результате становления. Это идеальное оказалось тем же самым, которое было и до становления. Новая субстанция ничего в нем не повредила. Оно осталось тем же. Становление, правда, много раз переносило его с места на место, но оно везде и постоянно, несмотря на инобытийную вовлеченность, оказывается самим собою, без всяких изменений. 3. Эта отождествленность идеального самого по себе с идеальным в разные моменты его инобытийного и реального становления, или отождествление идеального с самим собою в разные моменты его реального протяжения, и есть его конгруэнтность. Когда в геометрии утверждается, что при равенстве двух соответствующих сторон треугольников и угла между этими сторонами самые треугольники конгруэнтны, то это значит только то, что треугольник везде остается самим собою, что его структура совершенно не зависит от того «места», где мы ее мыслили осуществленной. Пусть мы имеем какие–нибудь две пересекающиеся прямые и, следовательно, углы между ними. Покамест не поднимался вопрос о ставшем, т. е. реальном протяжении, мы могли оперировать с этим углом как угодно. Неудивительно, что в чистой мысли он, удаленный от всего реального и пребывающий в смысловой изоляции, ровно никак не меняется и был просто самим собою и больше ничего. Совсем другое дело, однако, если мы захотим мыслить его реально протяженным. Пусть мы берем для этого какую–нибудь произвольную прямую и пусть строим на ней наш первоначальный, никуда не двигавшийся, идеальный угол. Вот мы начертили из какой–нибудь точки этой прямой произвольную дугу и на ней откладываем расстояние, равное величине первоначального угла. Получит ли линия, соединяющая отметку этого расстояния с центром нашей дуги, однозначное значение и образуется ли таким образом угол, равный нашему первоначальному углу? Если пространство везде одинаково и не деформирует проводимых на нем линий и вообще фигур и если самые фигуры таковы, что ничего не теряют от своего пространственного передвижения, то мы можем поручиться, что новый угол будет абсолютно равен первоначальному, т. е., говоря вообще, что обе фигуры, первоначальная (как первообраз) и вновь построенная на новом участке пространства (как отображение), будут конгруэнтны. Отсюда перво–принцип ставшего числового бытия мы можем формулировать так: всякое число так или иначе определено с точки зрения конгруэнтности. Оно, конечно, может и совсем исключать момент конгруэнтности. Однако это возможно только тогда, когда известно, что такое конгруэнтность. Если мы, например, строим геометрию без аксиомы конгруэнтности, то это не значит, что конгруэнтности нет, но это значит, что конгруэнтность есть и она осуществима и что только в данном случае мы от нее воздерживаемся.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.021 сек.) |