АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Линейная комбинация векторов

Читайте также:
  1. I. Линейная алгебра
  2. III. Векторное произведение векторов, заданных координатами
  3. III. Линейная алгебра
  4. MathCad: понятие массива, создание векторов и матриц.
  5. V2: ДЕ 14 – Векторные пространства. Коллинеарность векторов.
  6. Б) вычитание векторов.
  7. Билет 6.Линейная зависимость и независимость векторов. Базис на плоскости и в пространстве
  8. Билет 7 Скалярное произведение векторов, проекция одного вектора на другой. Понятие линейного пространства и подпространства, критерии подпространства
  9. Билет10 Различные уравнения плоскости, угол между плоскостями. Вид матрицы линейного оператора в базисе из собственных векторов.
  10. Билинейная форма и ее матрица
  11. Векторное и смешанное произведение векторов. Свойства и геометрический смысл. Вычисление через координаты векторов.
  12. Векторное произведение векторов

 

Линейной комбинацией векторов называют вектор

где - коэффициенты линейной комбинации. Если комбинация называется тривиальной, если - нетривиальной.


Линейная зависимость и независимость векторов

 

Система линейно зависима что

Система линейно независима


Критерий линейной зависимости векторов

 

Для того чтобы векторы (r > 1) были линейно зависимы, необходимо и достаточно, чтобы хотя бы один из этих векторов являлся линейной комбинацией остальных.


Размерность линейного пространства

 

Линейное пространство V называется n -мерным (имеет размерность n), если в нем:

1) существует n линейно независимых векторов;

2) любая система n + 1 векторов линейно зависима.

Обозначения: n = dim V; .

Базис пространства . Координаты вектора

 

Базис - любая упорядоченная система из n линейно независимых векторов пространства .

Обозначение:

Для каждого вектора существуют числа такие что

Числа называются координатами вектора в базисе () (определяются однозначно), X = (x) - координатный столбец вектора в этом базисе. Употребляется запись:

Справедливы формулы:


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)