АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение систем линейных уравнений методом Гаусса. Рассмотрим систему m-линейных уравнений c n-неизвестными

Читайте также:
  1. A) к любой экономической системе
  2. A) прогрессивная система налогообложения.
  3. C) Систематическими
  4. CASE-технология создания информационных систем
  5. ERP и CRM система OpenERP
  6. HMI/SCADA – создание графического интерфейса в SCADА-системе Trace Mode 6 (часть 1).
  7. I Понятие об информационных системах
  8. I СИСТЕМА, ИСТОЧНИКИ, ИСТОРИЧЕСКАЯ ТРАДИЦИЯ РИМСКОГО ПРАВА
  9. I. Основні риси політичної системи України
  10. I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ
  11. I. Решение логических задач средствами алгебры логики
  12. I. Составление дифференциальных уравнений и определение передаточных функций

Рассмотрим систему m- линейных уравнений c n -неизвестными

(1)

Теорема: Если какое-либо уравнение системы умножить на произвольное число и прибавить это произведение к другому уравнению системы, оставив при этом неизменными все остальные уравнения системы, включая то, которое умножалось на число, то получим систему, равносильную исходной.

Составим расширенную матрицу системы (1) .

Строки матрицы соответствуют уравнениям системы. Умножение уравнения на число и сложение этого произведения с другим, эквивалентно умножению строки матрицы на это число и почленному сложению произведения с другой строкой матрицы. Таким образом, работа с уравнениями заменяется работой со строками матрицы.

Этапы решения:

I Этап: прямой ход заключается в том, что система (1) приводится к ступенчатому виду: , (2)

в частности, к треугольному виду: . (3)


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)